• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, September 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study identifies new target to preserve nerve function

Bioengineer by Bioengineer
July 14, 2017
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists in the Vollum Institute at OHSU have identified an enzyme that plays a crucial role in the degeneration of axons, the threadlike portions of a nerve cell that transmit signals within the nervous system. Axon loss occurs in all neurodegenerative diseases, so this discovery could open new pathways to treating or preventing a wide array of brain diseases.

The research team discovered a new role of the enzyme Axundead – or Axed – in promoting the self-destruction of axons. They found that when Axed function was blocked, injured axons not only maintained their integrity but remained capable of transmitting signals within the brain's complex circuitry for weeks. Their research was published July 5 in the journal Neuron.

"If you target this pathway, you have a really good chance of preserving the functional aspects of neurons after a variety of types of trauma or injury," said senior author Marc Freeman, Ph.D., director of the Vollum Institute at OHSU. "It's a very attractive therapeutic target."

Freeman conducted the work in the Department of Neurobiology at the University of Massachusetts Medical School. He has since been recruited to head the Vollum Institute, which conducts cutting-edge basic research into how the nervous system works at a molecular level.

Severing axons, or axotomy, is a simple way to study the molecular basis of neurodegeneration as it leads to the activation of explosive axonal degeneration. In the laboratory, researchers using this technique can identify pro-degenerative genes with great specificity, especially when using sophisticated genetic approaches in the fruit fly Drosophila, Freeman's primary research model organism. Drosophila shares these same pathways with humans. Previous work by Freeman's lab identified another enzyme, a gene called SARM, which was the first shown to activate a process that causes axons to disintegrate when damaged.

In the current study, Freeman and colleagues identified Axed, showed that it functions downstream of SARM to execute axonal degeneration, and, surprisingly, that the protection afforded by blocking Axed was even stronger than SARM.

"There was really nothing we could do to kill axons where Axed function was blocked," Freeman said.

From an evolutionary perspective, Freeman said SARM and Axed function are likely important in the peripheral nervous system after injury because programmed axon death allows for efficient packaging of damaged cellular materials for removal by immune cells. This process thereby clears the pathway for new neuronal processes to regrow, reinnervate tissues, and recover function.

From a therapeutic perspective, the goal of the work is to understand at the molecular level how axons degenerate, and block those pathways in patients to preserve nervous system function. In many nervous system injuries axons are not severed but become stretched or crushed, which activates the SARM-dependent death program and drives axon loss. In those cases, it's imperative to block SARM and Axed signaling to preserve axon integrity, and in turn neuronal function. At the same time, Freeman and others have shown that SARM-dependent signaling pathways also drive axon loss in neurodegenerative conditions including glaucoma, traumatic brain injury and peripheral neuropathy. This suggests the notion of an ancient and conserved axon death signaling pathway that is widely activated to drive axon loss. Since axon loss is a universal feature of neurodegenerative diseases, it seems likely that blocking this pathway could have enormous therapeutic benefit.

"If we can find ways to block it, maybe we can preserve function in a wide array of patients who have lost axons through neurodegenerative diseases or other neural trauma," Freeman said.

###

Lead author Lukas J. Neukomm, Ph.D., was supported by the Charles A. King Trust Postdoctoral Fellowship, supported by the Harold Whitworth Pierce Charitable Trust. Freeman's work on the study was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health, grant R01 NS053538. During the period of the study, Freeman was an investigator with the Howard Hughes Medical Institute.

Media Contact

Erik Robinson
[email protected]
503-494-7986
@ohsunews

http://www.ohsu.edu

http://dx.doi.org/10.1016/j.neuron.2017.06.031

Share12Tweet7Share2ShareShareShare1

Related Posts

Impact of Teamwork and Competition on STEM Engagement

September 10, 2025

Transforming Postgraduate Nursing: Journal Club Insights

September 10, 2025

PLD4 Mutations Trigger Systemic Lupus Erythematosus

September 10, 2025

In-Person and Online Event Showcases Strategies for Advancing Food Animal Welfare

September 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    62 shares
    Share 25 Tweet 16
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Teamwork and Competition on STEM Engagement

Transforming Postgraduate Nursing: Journal Club Insights

Unraveling Gene Expression Mechanisms in Glioblastoma

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.