• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Piece of mind

Bioengineer by Bioengineer
March 20, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: Rajesh Menon

With just an inexpensive micro-thin surgical needle and laser light, University of Utah engineers have discovered a minimally invasive, inexpensive way to take high-resolution pictures of an animal brain, a process that also could lead to a much less invasive method for humans.

A team led by University of Utah electrical and computer engineering associate professor Rajesh Menon has now proven the process works on mice for the benefit of medical researchers studying neurological disorders such as depression, obsessive-compulsive disorder and aggression. Menon and his team have been working with the U. of U.'s renowned Nobel-winning researcher, Distinguished Professor of Biology and Human Genetics Mario Capecchi, and Jason Shepherd, assistant professor of neurobiology and anatomy.

The group has documented its process in a paper titled, "Deep-brain imaging via epifluorescence Computational Cannula Microscopy," in the latest issue of Scientific Reports. The paper's lead author is doctoral student Ganghun Kim.

The process, called "computational cannula microscopy," involves taking a needle about a quarter-millimeter in diameter and inserting it into the brain. Laser light shines through the needle and into the brain, illuminating certain cells "like a flashlight," Menon says. In the case of mice, researchers genetically modify the animals so that only the cells they want to see glow under this laser light.

The light from the glowing cells then is captured by the needle and recorded by a standard camera. The captured light is run through a sophisticated algorithm developed by Menon and his team, which assembles the scattered light waves into a 2D or potentially, even a 3D picture.

Typically, researchers must surgically take a sample of the animal's brain to examine the cells under a microscope, or they use an endoscope that can be anywhere from 10 to 100 times thicker than a needle.

"That's very damaging," Menon says of previous methods of examining the brain. "What we have done is to take a surgical needle that's really tiny and easily put it into the brain as deep as we want and see very clear high-resolution images. This technique is particularly useful for looking deep inside the brain where other techniques fail."

Now that the process has been proven to work in animals, Menon believes it can potentially be developed for human patients, creating a simpler, less expensive and invasive method than endoscopes.

"Although its much more complex from a regulatory standpoint, it can be done in humans, and not just in the brain, but for other organs as well," he says. "But our motivation for this project right now is to look inside the brain of the mouse and further develop the technique to understand fundamental neuroscience in the mouse brain."

###

The paper's co-authors include doctoral student Kyle Jenks and postdoctoral researchers Naveen Nagarajan and Elissa Pastuzyn.

Media Contact

Vince Horiuchi
[email protected]
801-585-7499
@uofunews

http://www.unews.utah.edu/

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Switching Treprostinil Formulations: Key Evidence and Approaches

November 10, 2025
blank

Blueprint Reveals Environmental Consequences of AI Data Center Expansion

November 10, 2025

Rapid Dopamine Changes Don’t Drive Action Vigor

November 10, 2025

Respiratory Immunization with Inactivated B. pertussis Protects Mice

November 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    315 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    207 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    139 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1303 shares
    Share 520 Tweet 325

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Switching Treprostinil Formulations: Key Evidence and Approaches

Blueprint Reveals Environmental Consequences of AI Data Center Expansion

Rapid Dopamine Changes Don’t Drive Action Vigor

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.