• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A new tractor beam technology aims to minimize biopsy trauma

by
July 19, 2024
in Health
Reading Time: 3 mins read
0
High Efficiency Triple-Helix Solenoid Beam Generated by Dielectric Metasurface Cover Art
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at TMOS, the ARC Centre of Excellence for Transformative Meta-Optical Systems, have taken an important first step in the development of metasurface-enabled tractor beams—rays of light that can pull particles toward it, a concept that fictional tractor beams featured in science fiction are based on.

High Efficiency Triple-Helix Solenoid Beam Generated by Dielectric Metasurface Cover Art

Credit: Credit University of Melbourne

Researchers at TMOS, the ARC Centre of Excellence for Transformative Meta-Optical Systems, have taken an important first step in the development of metasurface-enabled tractor beams—rays of light that can pull particles toward it, a concept that fictional tractor beams featured in science fiction are based on.

In research published in ACS Photonics today, the University of Melbourne team describes their solenoid beam that is generated using a silicon metasurface. Previous solenoid beams have been created by bulky special light modulators (SLMs), however the size and weight of these systems prevent the beams being used in handheld devices. The metasurface is a layer of nanopatterned silicon only about 1/2000 of a millimetre thick. The team hopes that one day it could be used to take biopsies on a non-invasive manner, unlike current methods such as forceps that cause trauma to the surrounding tissues.

Beams of light tend to exert a pushing force, moving particles away from the light source. Solenoid beams have been proven to draw particles toward the light source. Consider the way a drill works, pulling wood shavings up the drill bit. Solenoid beams work similarly.

This particular solenoid beam has several benefits over previously generated solenoid beams in that the required conditions of the input beam are more flexible than with previous beams, it doesn’t require an SLM, and the size, weight and power requirements are significantly less than previous systems.

The metasurface was created by mapping the phase hologram of the desired beam. This was used to create a pattern. The metasurface was then fabricated from silicon using electron beam lithography and reactive ion etching. When the input beam, in this case a Gaussian beam, filters through the metasurface, most of it (approximately 76%) is converted into a solenoid beam and bends away from the unconverted beam, allowing the researchers to work with it without obstruction. They were able to characterize the beam at a distance of 21 centimeters.

Lead researcher Maryam Setareh says, “The compact size and high efficiency of this device could lead to innovative applications in the future. The ability to pull particles using a metasurface might have the potential to impact the field of biopsy by potentially reducing pain through less invasive methods.”

Setareh says, “We are excited to investigate the performance of our device in particle manipulation, which could offer valuable insights.”

Chief Investigator Ken Crozier says, “The next stage of this research will be to experimentally demonstrate the beam’s ability to pull particles, and we’ll be excited to share those results when they’re available.”

Crozier says “This work opens new possibilities for using light to exert forces on tiny objects”

For more information about this research, please contact [email protected]



Journal

ACS Photonics

DOI

10.1021/acsphotonics.4c00874

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

High Efficiency Triple-Helix Solenoid Beam Generated by Dielectric Metasurface

Article Publication Date

17-Jul-2024

Share12Tweet8Share2ShareShareShare2

Related Posts

Identifying Healthcare Waste Behavior: An Australian Case Study

October 3, 2025

Capsaicin, Nicotine Ease MPTP Olfactory Dysfunction via Neuroinflammation Suppression

October 3, 2025

Brain Tumors Disrupt Skull Bone and Immune Cells

October 3, 2025

Comparing Cell Viability: Flow Cytometry vs. Microscopy

October 3, 2025

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    92 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    86 shares
    Share 34 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Identifying Healthcare Waste Behavior: An Australian Case Study

Capsaicin, Nicotine Ease MPTP Olfactory Dysfunction via Neuroinflammation Suppression

Brain Tumors Disrupt Skull Bone and Immune Cells

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.