• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Hubble finds big brother of Halley’s Comet ripped apart by white dwarf

Bioengineer by Bioengineer
February 9, 2017
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: NASA, ESA, and Z. Levy (STScI)

The international team of astronomers observed the white dwarf WD 1425+540, about 170 light-years from Earth in the constellation Boötes (the Herdsman) [1]. While studying the white dwarf's atmosphere using both the NASA/ESA Hubble Space Telescope and the W. M. Keck Observatory the team found evidence that an object rather like a massive comet was falling onto the star, getting tidally disrupted while doing so.

The team determined that the object had a chemical composition similar to the famous Halley's Comet in our own Solar System, but it was 100 000 times more massive and had twice the proportion of water as its local counterpart. Spectral analysis showed that the destroyed object was rich in the elements essential for life, including carbon, oxygen, sulphur and even nitrogen [2].

This makes it the first detection of nitrogen in the debris falling onto a white dwarf. Lead author Siyi Xu of the European Southern Observatory, Germany, explains the importance of the discovery: "Nitrogen is a very important element for life as we know it. This particular object is quite rich in nitrogen, more so than any object observed in our Solar System."

There are already more than a dozen white dwarfs known to be polluted with infalling debris from rocky, asteroid-like objects, but this is the first time a body made of icy, comet-like material has been seen polluting a white dwarf's atmosphere. These findings are evidence for a belt of comet-like bodies, similar to our Solar System's Kuiper Belt, orbiting the white dwarf. These icy bodies apparently survived the star's evolution from a main sequence star — similar to our Sun — to a red giant — and its final collapse to a small, dense white dwarf.

The team that made this discovery also considered how this massive object got from its original, distant orbit onto a collision course with its parent star [3]. The change in the orbit could have been caused by the gravitational distribution by so far undetected, surviving planets which have perturbed the belt of comets. Another explanation could be that the companion star of the white dwarf disturbed the belt and caused objects from the belt to travel toward the white dwarf. The change in orbit could also have been caused by a combination of these two scenarios.

The Kuiper Belt in the Solar System, which extends outward from Neptune's orbit, is home to many dwarf planets, comets, and other small bodies left over from the formation of the Solar System. The new findings now provide observational evidence to support the idea that icy bodies are also present in other planetary systems and have survived throughout the history of the star's evolution.

###

Notes

[1] The white dwarf was first found in 1974 and is part of a wide binary system, with a companion star separated by 2000 times the distance that the Earth is from the Sun.

[2] The measurements of carbon, nitrogen, oxygen, silicon, sulphur, iron and nickel and hydrogen come from the Cosmic Origins Spectrograph (COS, installed at the NASA/ESA Hubble Space Telescope . The W. M. Keck Telescopes provided the calcium, magnesium, and hydrogen.

[3] The team calculated that the accreted object originally resided about 300 astronomical units — 300 times the distance Earth-Sun — away from the white dwarf. This is seven times further out than the Kuiper-Belt objects in the Solar System.

More information

The Hubble Space Telescope is a project of international cooperation between ESA and NASA.

The international team of astronomers in this study consists of S. Xu (ESO, Germany), B. Zuckerman (Department of Physics and Astronomy, University of California, Los Angeles, USA), P. Dufour (Institut de Recherche sur les Exoplanètes, Université de Montréal, Canada), E. D. Young (Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles), B. Klein (Department of Physics and Astronomy, University of California, Los Angeles, USA), M. Jura (Department of Physics and Astronomy, University of California, Los Angeles, USA)

Image credit: NASA, ESA and Z. Levy (STScI)

Links

  • Images of Hubble – http://www.spacetelescope.org/images/archive/category/spacecraft/
  • hubblesite release
  • science paper

Contacts

Siyi Xu
European Southern Observatory
Garching bei München, Germany
Tel: +49 89 3200 6298
Email: [email protected]

Mathias Jäger
ESA/Hubble, Public Information Officer
Garching, Germany
Tel: +49 176 62397500
Email: [email protected]

Media Contact

Mathias Jäger
[email protected]
49-176-623-97500
@Hubble_space

http://www.spacetelescope.org

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.