• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

“Superarthropods”: New publication unravels the impact of the widespread use of insecticides for malaria control

Bioengineer by Bioengineer
August 8, 2023
in Health
Reading Time: 3 mins read
0
Spraying insecticides on walls inside a home
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Several diseases are caused by viruses, bacteria, or even parasites. Sometimes, these microorganisms cannot infect humans (or other animals) by themselves, so they rely on other organisms -called vectors- to carry them around and transmit the disease from one host to another. A well-known group of vectors is arthropods. Arthropods have a hard exoskeleton, segmented bodies, and jointed legs. They are incredibly diverse and can be found in various habitats worldwide. They include disease-carrying vectors such as mosquitoes, sand flies, kissing bugs, and ticks.

Spraying insecticides on walls inside a home

Credit: Courtesy of Krijn Paaijmans

Several diseases are caused by viruses, bacteria, or even parasites. Sometimes, these microorganisms cannot infect humans (or other animals) by themselves, so they rely on other organisms -called vectors- to carry them around and transmit the disease from one host to another. A well-known group of vectors is arthropods. Arthropods have a hard exoskeleton, segmented bodies, and jointed legs. They are incredibly diverse and can be found in various habitats worldwide. They include disease-carrying vectors such as mosquitoes, sand flies, kissing bugs, and ticks.

Mosquitoes spread diseases like malaria, dengue, Zika, and yellow fever. Over the last century, people have developed various ways to reduce mosquito numbers to avoid spreading life-threatening diseases, mainly malaria. The most common approach is using insecticides added to bednets or sprayed indoors. Although these tools target mosquitoes, they often affect other types of arthropods that might come in contact with them. 

Graduate student Ndey Bassin Jobe, Assistant Professor Silvie Huijben, and Assistant Professor Krijn Paaijmans from the School of Life Sciences and the Center for Evolution and Medicine recently published a personal view in The Lancet Planetary Health journal. In their publication, they discuss how insecticides used in malaria control not only affect malaria-carrying mosquitoes but can also lead to insecticide resistance in other arthropods, several of which transmit overlooked and dangerous tropical diseases.

How these arthropods behave, like when and where they feed and rest, affects how much they are exposed to insecticides used for malaria control. Jobe and colleagues argue that there is an urgent need to monitor the behavior and insecticide susceptibility status of those other arthropods.

When other arthropods are repeatedly exposed to the same insecticides, they might become resistant to the chemicals meant to kill or control malaria mosquitoes. 
“Understanding the extent to which other disease vectors are exposed to insecticides used now is critical because if they already develop resistance, it will be difficult to prevent and control future emerging and re-emerging diseases,” Ndey Bassin explains. 

Unfortunately, many other arthropod species are already resistant to insecticides used in malaria vector control. Scientists still don’t know much about when, where, and how often they come into contact with malaria control tools. Understanding how these organisms become resistant is crucial to ensure insecticides can effectively control and prevent various diseases now and in the future. 

“Effectively combating vector-borne diseases depends very often on the control of arthropod vectors as for many diseases, including West Nile virus, Zika, chikungunya, Saint Louis encephalitis and Ross River virus, we do not have vaccines or drugs,” Professor Paaijmans said. 

The authors emphasize an urgent need for a comprehensive approach to managing disease-carrying organisms. Understanding behavioral patterns and the overall characteristics of other organisms that can spread disease is critical to preventing and controlling future health threats. 

“We have to improve our understanding of the distribution, ecology, behavior and insecticide susceptibility status of all other relevant arthropod species, to ensure we develop the most future-proof and holistic vector control strategies and protect future generations,” Professor Huijben concluded.  
 



Journal

The Lancet Planetary Health

Subject of Research

Not applicable

Article Title

Non-target effects of chemical malaria vector control on other biological and mechanical infectious disease vectors

Article Publication Date

7-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Barriers and Boosters of Seniors’ Physical Activity in Karachi

February 7, 2026

Evaluating Pediatric Emergency Care Quality in Ethiopia

February 7, 2026

TPMT Expression Predictions Linked to Azathioprine Side Effects

February 7, 2026

Improving Dementia Care with Enhanced Activity Kits

February 7, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Barriers and Boosters of Seniors’ Physical Activity in Karachi

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.