• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, October 2, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

“Superarthropods”: New publication unravels the impact of the widespread use of insecticides for malaria control

Bioengineer by Bioengineer
August 8, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Several diseases are caused by viruses, bacteria, or even parasites. Sometimes, these microorganisms cannot infect humans (or other animals) by themselves, so they rely on other organisms -called vectors- to carry them around and transmit the disease from one host to another. A well-known group of vectors is arthropods. Arthropods have a hard exoskeleton, segmented bodies, and jointed legs. They are incredibly diverse and can be found in various habitats worldwide. They include disease-carrying vectors such as mosquitoes, sand flies, kissing bugs, and ticks.

Spraying insecticides on walls inside a home

Credit: Courtesy of Krijn Paaijmans

Several diseases are caused by viruses, bacteria, or even parasites. Sometimes, these microorganisms cannot infect humans (or other animals) by themselves, so they rely on other organisms -called vectors- to carry them around and transmit the disease from one host to another. A well-known group of vectors is arthropods. Arthropods have a hard exoskeleton, segmented bodies, and jointed legs. They are incredibly diverse and can be found in various habitats worldwide. They include disease-carrying vectors such as mosquitoes, sand flies, kissing bugs, and ticks.

Mosquitoes spread diseases like malaria, dengue, Zika, and yellow fever. Over the last century, people have developed various ways to reduce mosquito numbers to avoid spreading life-threatening diseases, mainly malaria. The most common approach is using insecticides added to bednets or sprayed indoors. Although these tools target mosquitoes, they often affect other types of arthropods that might come in contact with them. 

Graduate student Ndey Bassin Jobe, Assistant Professor Silvie Huijben, and Assistant Professor Krijn Paaijmans from the School of Life Sciences and the Center for Evolution and Medicine recently published a personal view in The Lancet Planetary Health journal. In their publication, they discuss how insecticides used in malaria control not only affect malaria-carrying mosquitoes but can also lead to insecticide resistance in other arthropods, several of which transmit overlooked and dangerous tropical diseases.

How these arthropods behave, like when and where they feed and rest, affects how much they are exposed to insecticides used for malaria control. Jobe and colleagues argue that there is an urgent need to monitor the behavior and insecticide susceptibility status of those other arthropods.

When other arthropods are repeatedly exposed to the same insecticides, they might become resistant to the chemicals meant to kill or control malaria mosquitoes. 
“Understanding the extent to which other disease vectors are exposed to insecticides used now is critical because if they already develop resistance, it will be difficult to prevent and control future emerging and re-emerging diseases,” Ndey Bassin explains. 

Unfortunately, many other arthropod species are already resistant to insecticides used in malaria vector control. Scientists still don’t know much about when, where, and how often they come into contact with malaria control tools. Understanding how these organisms become resistant is crucial to ensure insecticides can effectively control and prevent various diseases now and in the future. 

“Effectively combating vector-borne diseases depends very often on the control of arthropod vectors as for many diseases, including West Nile virus, Zika, chikungunya, Saint Louis encephalitis and Ross River virus, we do not have vaccines or drugs,” Professor Paaijmans said. 

The authors emphasize an urgent need for a comprehensive approach to managing disease-carrying organisms. Understanding behavioral patterns and the overall characteristics of other organisms that can spread disease is critical to preventing and controlling future health threats. 

“We have to improve our understanding of the distribution, ecology, behavior and insecticide susceptibility status of all other relevant arthropod species, to ensure we develop the most future-proof and holistic vector control strategies and protect future generations,” Professor Huijben concluded.  
 



Journal

The Lancet Planetary Health

Subject of Research

Not applicable

Article Title

Non-target effects of chemical malaria vector control on other biological and mechanical infectious disease vectors

Article Publication Date

7-Aug-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Tripolar division

Researchers studied thousands of fertility attempts hoping to improve IVF

October 2, 2023
Irritible Bowel Syndrome

New study will examine irritable bowel syndrome as long COVID symptom

September 29, 2023

ASTRO 2023 Session shines spotlight on physician burnout

September 29, 2023

American Academy of Arts and Sciences to induct UVA’s Garcia-Blanco

September 29, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Dense measurement network revealed high level of PM2.5 in Punjab due to crop residue burning and its transport to Haryana and Delhi NCR

Next-generation printing: precise and direct, using optical vortices

Researchers studied thousands of fertility attempts hoping to improve IVF

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In