LEXINGTON, Ky. (May 9, 2023) — A new University of Kentucky Markey Cancer Center study reveals more about changes that happen to cancer cells when they metastasize and identifies a promising target for the treatment of metastatic breast cancer.
Credit: Photo by Ben Corwin.
LEXINGTON, Ky. (May 9, 2023) — A new University of Kentucky Markey Cancer Center study reveals more about changes that happen to cancer cells when they metastasize and identifies a promising target for the treatment of metastatic breast cancer.
Metastasis is when cancer cells spread from the primary tumor to surrounding tissues and distant organs in the body and is the primary cause for breast cancer mortality. Cancer cells’ plasticity, or their ability to change and adapt, is critical for progression to metastatic cancer.
The research, published in PNAS May 8, shows a metabolite called succinate plays a role in enhancing cancer cell plasticity and identifies an enzyme called PLOD2 as a regulator of succinate during breast cancer progression.
“The results reveal a previously unidentified function of succinate and its role in breast cancer metastasis, filling a critical gap in our knowledge regarding how changes in metabolites promote cancer cell plasticity,” said Ren Xu, Ph.D., the study’s principal investigator and a professor in the UK College of Medicine’s Department of Pharmacology and Nutritional Sciences.
In collaboration with Andrew N. Lane, Ph.D., professor in the College of Medicine’s Department of Toxicology and Cancer Biology and co-director of the Center for Environmental and Systems Biochemistry, Xu’s team studied metabolic reprogramming in mammary epithelial cells during epithelial mesenchymal transition (EMT), a biologic process that mobilizes cancer cells.
The results also suggest targeting PLOD2 could be a promising strategy to suppress breast cancer metastasis and drug resistance.
PLOD2 expression during EMT elevated succinate levels in breast cancer cells, while PLOD2 inhibition reduced succinate levels and inhibited cancer cell plasticity.
“As PLOD2 is a druggable target, these findings could pave the way for the development of new therapies to stop cancer progression,” said Xu.
Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers R01CA207772 and R01CA215095. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
UK HealthCare is the hospitals and clinics of the University of Kentucky. But it is so much more. It is more than 10,000 dedicated health care professionals committed to providing advanced subspecialty care for the most critically injured and ill patients from the Commonwealth and beyond. It also is the home of the state’s only National Cancer Institute (NCI)-designated cancer center, a Level IV Neonatal Intensive Care Unit that cares for the tiniest and sickest newborns, the region’s only Level 1 trauma center and Kentucky’s top hospital ranked by U.S. News & World Report.
As an academic research institution, we are continuously pursuing the next generation of cures, treatments, protocols and policies. Our discoveries have the potential to change what’s medically possible within our lifetimes. Our educators and thought leaders are transforming the health care landscape as our six health professions colleges teach the next generation of doctors, nurses, pharmacists and other health care professionals, spreading the highest standards of care. UK HealthCare is the power of advanced medicine committed to creating a healthier Kentucky, now and for generations to come.
Journal
Proceedings of the National Academy of Sciences
Article Title
The PLOD2/succinate axis regulates the epithelial–mesenchymal plasticity and cancer cell stemness