• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

4G network infrastructure could mean fewer accidents by drivers

Bioengineer by Bioengineer
January 17, 2017
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram
IMAGE

Credit: University of Bristol

New research that suggests a pre-existing 4G network infrastructure could help drivers make safe decisions in or near accidents has won the 'Best Paper Award' at an international conference.

The research carried out by the University of Bristol Communication Systems & Networks (CSN) Group, in collaboration with the Université Blaise Pascal in France, was presented at the international conference Signal Processing, Telecommunications & Computing (SigTelCom) 2017, supported by IEEE, Newton Fund and British Council.

An important factor in vehicle-related accidents is the lack of information and if drivers are aware of their surroundings and road conditions, many accidents could be avoided. As driverless cars begin to gain momentum, improvements will be needed to ensure vehicles receive the correct information. A key question is how high-quality data can be shared by an Intelligent Transportation System (ITS) to help drivers in emergency situations.

The research team suggest a cost-effective solution to this problem is for city-owned base stations to form a single frequency network (SFN), which will enable drivers to have the information they need to make safe decisions in or near accidents.

In order to ensure that transmissions are reliable, tight bounds on the outage probability would need to be developed when the SFN is overlaid on an existing cellular network.

The researchers also present an extremely efficient transmission power allocation algorithm that, for the situations outlined, can reduce the total immediate SFN transmission power by up to 20 times compared to a static uniform power allocation solution. This is particularly important when base stations rely on an off-grid power source, such as batteries.

Dr Andrea Tassi, Senior Research Associate in Wireless Connectivity for Autonomous Vehicles from the Department of Electrical and Electronic Engineering and CSN Group, who led the research, said: "Obtaining high-quality sensor information is critical in vehicle emergencies. We have shown that our proposed power allocation (PA) model can help to significantly reduce the transmission power of the proposed network while target signal-to-noise and interference ratio (SINR) outage constraints are met. With cars receiving reliable information, our research could improve road safety in future intelligent transportation systems."

The University's CSN Group is part of the Innovate UK-funded projects, VENTURER and FLOURISH, and is playing a leading role in connectivity for automotive applications.

###

Paper:

'Wireless Vehicular Networks in Emergencies: A Single Frequency Network Approach' by Andrea Tassi, Malcolm Egan, Robert J. Piechocki and Andrew Nix, presented at SigTelCom 2017.

Media Contact

Joanne Fryer
[email protected]
44-011-733-17276
@BristolUni

http://www.bristol.ac.uk

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Rice Scientists Innovate ‘Molecular Magnifying Glass’ to Detect Plant Diseases Earlier

Rice Scientists Innovate ‘Molecular Magnifying Glass’ to Detect Plant Diseases Earlier

September 15, 2025

AI Algorithm Using Routine Mammograms and Age Accurately Predicts Major Cardiovascular Disease Risk in Women

September 15, 2025

Assessing Liquefaction Resistance in Chemically Treated Soils Using Cyclic Triaxial Testing

September 15, 2025

Light Navigation on a Chip: Synthetic Magnetic Fields Propel Faster Communication

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Rice Scientists Innovate ‘Molecular Magnifying Glass’ to Detect Plant Diseases Earlier

AI Algorithm Using Routine Mammograms and Age Accurately Predicts Major Cardiovascular Disease Risk in Women

Assessing Liquefaction Resistance in Chemically Treated Soils Using Cyclic Triaxial Testing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.