• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Post-mortem interval of human skeletal remains accurately determined by means of non-destructive techniques

Bioengineer by Bioengineer
January 28, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the field of forensic analysis there is a significant demand for objectively determining the post-mortem interval (PMI) when human skeletal remains are discovered. So far, a whole range of techniques have been used to establish the approximate time that has elapsed since the death of the individual, but they have significant drawbacks in terms of reliability and accuracy: they provide an approximate interval but not an exact date; they are relatively invasive techniques, which require staining or removal of a part of the bone, etc.

Researchers Bartolome and Sarmiento

Credit: Jorge Navarro. UPV/EHU.

In the field of forensic analysis there is a significant demand for objectively determining the post-mortem interval (PMI) when human skeletal remains are discovered. So far, a whole range of techniques have been used to establish the approximate time that has elapsed since the death of the individual, but they have significant drawbacks in terms of reliability and accuracy: they provide an approximate interval but not an exact date; they are relatively invasive techniques, which require staining or removal of a part of the bone, etc.

“The aim of this research was precisely to come up with a method capable of determining the relatively accurate post-mortem interval in human remains by using non-destructive measurements,” said Luis Bartolomé, technician in the UPV/EHU’s SGIker Central Analysis Service (SCAB).  

So “we analysed a set of 53 actual human skeletal remains with a known post-mortem interval provided by the Department of Legal Medicine, Toxicology and Physical Anthropology of the University of Granada. Using actual samples for the first time, we built and validated a model by combining two non-destructive tools: Raman spectroscopy and chemometrics”, explained the author of the paper.

 “Raman spectra,” Bartolomé went on to explain, “contain physico-chemical information on nearly all the components of the sample; however, due to their complexity, in most cases it is not possible to differentiate between all the information they contain. Chemometrics is capable of extracting the parameters of interest from the spectra through mathematical and statistical methods”.

“By combining both techniques, we have been able to build a model in which the Raman spectrum of each set of skeletal remains analysed is associated with a post-mortem interval. Relating the spectrum to a time interval is no easy task and for this we used statistical models and logarithms that allow us to relate each spectrum to a time. So when we receive human skeletal remains for which we don’t know the time that has elapsed since death, what we do is an interpolation by inserting these data into the validated model, and that way a relatively accurate post-mortem interval can be obtained,” explained Luis Bartolomé. “The data recorded in the model developed provides valuable, potentially useful, versatile information,” he stressed.

According to the UPV/EHU researcher, “the combination of both techniques is a significant achievement for forensic medicine and anthropology. However, there is always room for improvement as these types of models perform better the more samples there are and the more varied they are; the model includes more heterogeneity and responds more robustly to a wider range of cases.” 



Journal

Forensic Science International

DOI

10.1016/j.forsciint.2021.111087

Method of Research

Experimental study

Subject of Research

People

Article Title

Estimation of the post-mortem interval of human skeletal remains using Raman spectroscopy and chemometrics

Article Publication Date

29-Oct-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Ancient Cephalopod Unveiled: Nautilus Exhibits Surprising Sex Chromosome System

Ancient Cephalopod Unveiled: Nautilus Exhibits Surprising Sex Chromosome System

August 15, 2025
New Pediatric Study Reveals Sex-Specific Fetal Responses to Maternal Hypertension

New Pediatric Study Reveals Sex-Specific Fetal Responses to Maternal Hypertension

August 15, 2025

Acidulant and VERDAD N6 Enhance Tteokbokki Quality

August 15, 2025

Sparring Saigas Triumph at the 2025 BMC Journals Image Competition

August 15, 2025

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Lead in Breast Cancer Tissue Linked to DNA Instability

Training the Immune System to Accept Transplants: A Breakthrough That Could Revolutionize Organ Donation

KIER Innovates Advanced Electrodes for Efficient Hydrogen Production from Seawater Electrolysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.