• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Post-mortem interval of human skeletal remains accurately determined by means of non-destructive techniques

Bioengineer by Bioengineer
January 28, 2022
in Biology
Reading Time: 3 mins read
0
Researchers Bartolome and Sarmiento
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In the field of forensic analysis there is a significant demand for objectively determining the post-mortem interval (PMI) when human skeletal remains are discovered. So far, a whole range of techniques have been used to establish the approximate time that has elapsed since the death of the individual, but they have significant drawbacks in terms of reliability and accuracy: they provide an approximate interval but not an exact date; they are relatively invasive techniques, which require staining or removal of a part of the bone, etc.

Researchers Bartolome and Sarmiento

Credit: Jorge Navarro. UPV/EHU.

In the field of forensic analysis there is a significant demand for objectively determining the post-mortem interval (PMI) when human skeletal remains are discovered. So far, a whole range of techniques have been used to establish the approximate time that has elapsed since the death of the individual, but they have significant drawbacks in terms of reliability and accuracy: they provide an approximate interval but not an exact date; they are relatively invasive techniques, which require staining or removal of a part of the bone, etc.

“The aim of this research was precisely to come up with a method capable of determining the relatively accurate post-mortem interval in human remains by using non-destructive measurements,” said Luis Bartolomé, technician in the UPV/EHU’s SGIker Central Analysis Service (SCAB).  

So “we analysed a set of 53 actual human skeletal remains with a known post-mortem interval provided by the Department of Legal Medicine, Toxicology and Physical Anthropology of the University of Granada. Using actual samples for the first time, we built and validated a model by combining two non-destructive tools: Raman spectroscopy and chemometrics”, explained the author of the paper.

 “Raman spectra,” Bartolomé went on to explain, “contain physico-chemical information on nearly all the components of the sample; however, due to their complexity, in most cases it is not possible to differentiate between all the information they contain. Chemometrics is capable of extracting the parameters of interest from the spectra through mathematical and statistical methods”.

“By combining both techniques, we have been able to build a model in which the Raman spectrum of each set of skeletal remains analysed is associated with a post-mortem interval. Relating the spectrum to a time interval is no easy task and for this we used statistical models and logarithms that allow us to relate each spectrum to a time. So when we receive human skeletal remains for which we don’t know the time that has elapsed since death, what we do is an interpolation by inserting these data into the validated model, and that way a relatively accurate post-mortem interval can be obtained,” explained Luis Bartolomé. “The data recorded in the model developed provides valuable, potentially useful, versatile information,” he stressed.

According to the UPV/EHU researcher, “the combination of both techniques is a significant achievement for forensic medicine and anthropology. However, there is always room for improvement as these types of models perform better the more samples there are and the more varied they are; the model includes more heterogeneity and responds more robustly to a wider range of cases.” 



Journal

Forensic Science International

DOI

10.1016/j.forsciint.2021.111087

Method of Research

Experimental study

Subject of Research

People

Article Title

Estimation of the post-mortem interval of human skeletal remains using Raman spectroscopy and chemometrics

Article Publication Date

29-Oct-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

New Study Uncovers Mechanism Behind Burn Pit Particulate Matter–Induced Lung Inflammation

February 6, 2026

DeepBlastoid: Advancing Automated and Efficient Evaluation of Human Blastoids with Deep Learning

February 6, 2026

Navigating the Gut: The Role of Formic Acid in the Microbiome

February 6, 2026

AI-Enhanced Optical Coherence Photoacoustic Microscopy Revolutionizes 3D Cancer Model Imaging

February 6, 2026

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neg-Entropy: The Key Therapeutic Target for Chronic Diseases

Multidisciplinary Evidence-Based Guidelines for Therapeutic Drug Monitoring of Biologics in Inflammatory Bowel Disease

Early Tuberculosis Treatment Lowers Sepsis Mortality in People with HIV

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.