• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, July 21, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Study: Light therapy fast-tracks healing of skin damage from cancer radiation therapy

Bioengineer by Bioengineer
January 27, 2022
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BUFFALO, N.Y. – Light therapy may accelerate the healing of skin damage from radiation therapy by up to 50%, according to a recent University at Buffalo-led study.

Praveen Arany - University at Buffalo

Credit: Photographer: Douglas Levere

BUFFALO, N.Y. – Light therapy may accelerate the healing of skin damage from radiation therapy by up to 50%, according to a recent University at Buffalo-led study.

The research found that photobiomodulation – a form of low-dose light therapy –lowered the severity of skin damage from radionecrosis (the breakdown of body tissue after radiation therapy), reduced inflammation, improved blood flow and helped wounds heal up to 19 days faster.

The findings, published on Dec. 28 in Photonics, follow prior reports on the effectiveness of light therapy in improving the healing of burn wounds and in relieving pain from oral mucositis caused by radiation and chemotherapy.

The research was led by Rodrigo Mosca, PhD, visiting fellow from the Nuclear and Energy Research Institute (IPEN) and the Federal University of Rio de Janeiro, both in Brazil. Carlos Zeituni, PhD, professor at IPEN and the Federal University of Rio de Janeiro, is a senior author.

“To our knowledge, this is the first report on the successful use of photobiomodulation therapy for brachytherapy,” said senior author Praveen Arany, DDS, PhD, assistant professor of oral biology in the UB School of Dental Medicine. “The results from this study support the progression to controlled human clinical studies to utilize this innovative therapy in managing the side effects from radiation cancer treatments.”

Brachytherapy is a form of radiation therapy where a radiation source is implanted within the cancer tissue, exposing surrounding healthy tissue to lower doses of radiation than through teletherapy, a form which fires a beam of radiation through the skin to reach the tumor. Although brachytherapy has improved the precision and safety of cancer care, skin damage is still an unfortunate side effect. 

Similar to burn wounds, radionecrosis may cause inflammation and scarring and hinder blood flow. Current treatments to manage radionecrosis include routine wound care, pain medication and, in some cases, surgery.

Previous research conducted by Arany’s lab found that photobiomodulation promotes healing by activating TGF‐beta 1, a protein that controls cell growth and division by stimulating various cells involved in healing, including fibroblasts (the main connective tissue cells of the body that play an important role in tissue repair) and macrophages (immune cells that lower inflammation, clean cell debris and fight infection).

The new study, completed in an animal model, examined the effectiveness of both near-infrared and red LED light at improving the healing of skin damage during radiation therapy. 

Without photobiomodulation, wounds took an average of 61 days to heal. Using near-infrared light therapy, healing occurred within an average of 49 days. Healing occurred the fastest when using red light therapy, at an average of 42 days.

“For over 40 years, photobiomodulation has been known to accelerate the healing of acute and chronic wounds, triggering cellular processes that control inflammation, pain signaling, and tissue regeneration and repair,” said Mosca.

Research suggests that the effects of photobiomodulation does not extend to tumor cells, likely due to their perturbed metabolic and regulatory signaling, adds Arany.



Journal

Photonics

DOI

10.3390/photonics9010010

Article Title

The Efficacy of Photobiomodulation Therapy in Improving Tissue Resilience and Healing of Radiation Skin Damage

Article Publication Date

28-Dec-2021

Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025

POPULAR NEWS

  • Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    Enhancing Broiler Growth: Mannanase Boosts Performance with Reduced Soy and Energy

    73 shares
    Share 29 Tweet 18
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    52 shares
    Share 21 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.