• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Scientists discover nanoclusters effective for cancer in the second near-infrared synergy therapy

Bioengineer by Bioengineer
July 13, 2021
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: WANG Hui

As a minimally invasive method for cancer therapy at precise locations, NIR-induced photothermal therapy (PTT) has drawn extensively attention. The therapeutic mechanism is the use of photothermal agents (PTAs) in the treatment of tumors,and its therapeutic effect happens only at the tumor site where both light-absorbent and localized laser radiation coexist.

The development of PTAs with NIR-II absorbance, ranging from 1000nm to 1700 nm, can efficiently improve their penetrating ability and therapeutic effects because of their high penetration depth in the body. Howerever, several disadvantages are associated with these NIR-II responsive PTAs for their use in biomedical areas. Magnetic nanoparticles (MNPs), which boast strong absorption effect in NIR-II, can meet this demand. It has attracted much attention for biomedical applications with its noninvasive imaging function and magnetic-induced targeted ability.

Recently, a research team led by Prof. WANG Hui and Prof. LIN Wenchu of High Magnetic Field Laboratory, Hefei Institutes of Physical Science (HFIPS), the Chinese Academy of Sciences (CAS) reported a new type of NIR-II responsive hollow magnetite nanoclusters (HMNCs), which is made of composed of Fe3O4, mesoporous shell and hollow cavity for targeted imaging-guided combined therapy of cancer.

“HMNC absorbed NIR-II laser and converted it into local heat,” said Prof. WANG, “therefore we successfully accelerated combination of drug release and chemo-photothermal therapy.”

In one-step solvothermal method, they prepared HMNCs with NIR-II absorption at 1066 nm under an external magnetic field (0.5T), which provided photothermal effect on tumor. Besides, as Fe3O4 dissolved in the acid environment, they can convert H2O2 into toxic Hydroxyl radicals, which add chemodynamic effect. What’s more, the hollow cavities in HMNCs are good loading places for drug, which also acted as a targeted contrast agent for tumor magnetic resonance imaging.

Further in vivo experiments proved that the combined effect of photothermal, chemo-therapy and chemodynamic therapy of HMNCs has a significant inhibitory effect on mouse tumor growth.

This experiment showed a kind of multifunctional nanocarriers based on NIR-II responsive HMNCs for trimodal cancer therapy.

###

Link to the paper: NIR-II Responsive Hollow Magnetite Nanoclusters for Targeted Magnetic Resonance Imaging-Guided Photothermal/Chemo-Therapy and Chemodynamic Therapy

Figure 1. Schematic illustration of the HMNCs for targeted MRI, responsive drug release, NIR-II-induced photothermal treatment and chemodynamic therapy. (Image by WANG Hui)

Contact:

ZHAO Weiwei

Hefei Institutes of Physical Science (http://english.hf.cas.cn/)

Email: [email protected]

Media Contact
ZHAO Weiwei
[email protected]

Original Source

http://english.hf.cas.cn/new/news/rn/202107/t20210705_273556.html

Related Journal Article

http://dx.doi.org/10.1002/smll.202100794

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Hyperglycemia Worsens Osteoarthritis by Altering Macrophages

December 12, 2025

Tryptophan Build-Up Triggers p53-Driven Cell Death

December 12, 2025

Knowledge Translation Platforms: Brokers, Intermediaries, or Beyond?

December 12, 2025

Cost Analysis of Primary Biliary Cholangitis Treatments in US

December 12, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    205 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    108 shares
    Share 43 Tweet 27
  • Nurses’ Views on Online Learning: Effects on Performance

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Mother-Infant Gut Microbiome Influences Behavior Bidirectionally

Built Environment Gaps Worsen in Extreme Weather

Hyperglycemia Worsens Osteoarthritis by Altering Macrophages

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.