• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Striking gold: Synthesizing green gold nanoparticles for cancer therapy with biomolecules

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

In cancer therapy, the effectiveness of an approach is determined by its ability to preserve the non-cancerous cells. Simply put, the higher the collateral damage, the greater are the side-effects of a therapy. An ideal situation is where only the cancer cells can be targeted and destroyed. In this regard, photothermal therapy–an approach in which cancer cells infused with gold nanoparticles can be heated up and destroyed using near-infrared (NIR) light that is strongly absorbed by the gold nanoparticles–has emerged as a promising strategy due to its minimally invasive nature.

“Because NIR light is able to penetrate biological tissues, it can illuminate the gold nanoparticles within the body and turn them into nano-sized cell heating agents,” explains Prof. Masayoshi Tanaka from Tokyo Institute of Technology (Tokyo Tech), Japan, who researches nanomaterials for biomedical applications.

In particular, gold nanoplates (AuNPls) are extremely attractive as photothermal therapeutic agents owing to their efficient absorption of NIR light. However, synthesizing these nanoparticles requires harsh reagents and highly toxic conditions, making the process hazardous. In a new study, Prof. Tanaka and his collaborators from UK (University of Leeds) and Korea (Chung-Ang University) have now addressed this issue by developing a safer and more eco-friendly protocol for AuNPl synthesis, the results of which are published in ACTA Biomaterialia.

The team took the hint from a process called “biomineralization” that uses biomolecules to generate metal nanoparticles with tunable structures. “Peptides, or short chains of amino acids, are particularly attractive candidates for this purpose because of their relatively small size and stability. However, their use for producing Au nanoparticles with optimized structures for efficient NIR absorption has not yet been reported,” says Prof. Tanaka.

Motivated, the team began by identifying peptides suitable for the mineralization of AuNPls and, after picking out over 100 peptides, decided to examine the potential of a peptide named B3 for synthesizing AuNPls with controllable structure that can serve as photothermal conversion agents.

In a process called “one pot synthesis”, the team mixed a gold salt, HAuCl4, along with B3 peptide and its derivatives at various concentrations in a buffer solution (an aqueous solution resistant to changes in pH) at neutral pH and synthesized triangular and circular-shaped AuNPls with different levels of NIR absorption based on the peptide concentration.

The team then tested the effect of the AuNPls on cultured cancer cells under irradiated conditions and found them to exhibit the desired therapeutic effects. Furthermore, on characterizing the peptide using B3 derivatives, they found that an amino acid called histidine governed the structure of the AuNPls.

“These findings provide not only an easy and green synthetic method for AuNPls but also insight into the regulation of peptide-based nanoparticle synthesis,” comments Prof. Tanaka excitedly. “This could open doors to new techniques for non-toxic synthesis of nanoparticle therapeutic agents.”

Indeed, we might have struck gold with gold nanoparticles!

###

Media Contact
Kazuhide Hasegawa
[email protected]

Original Source

https://www.titech.ac.jp/english/news/2021/061229

Related Journal Article

http://dx.doi.org/10.1016/j.actbio.2021.06.010

Tags: Chemistry/Physics/Materials SciencesNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.