• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Ultralight material withstands supersonic microparticle impacts

Bioengineer by Bioengineer
September 6, 2025
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The new carbon-based material could be a basis for lighter, tougher alternatives to Kevlar and steel

A new study by engineers at MIT, Caltech, and ETH Zürich shows that “nanoarchitected” materials — materials designed from precisely patterned nanoscale structures — may be a promising route to lightweight armor, protective coatings, blast shields, and other impact-resistant materials.

The researchers have fabricated an ultralight material made from nanometer-scale carbon struts that give the material toughness and mechanical robustness. The team tested the material’s resilience by shooting it with microparticles at supersonic speeds, and found that the material, which is thinner than the width of a human hair, prevented the miniature projectiles from tearing through it.

The researchers calculate that compared with steel, Kevlar, aluminum, and other impact-resistant materials of comparable weight, the new material is more efficient at absorbing impacts.

“The same amount of mass of our material would be much more efficient at stopping a projectile than the same amount of mass of Kevlar,” says the study’s lead author, Carlos Portela, assistant professor of mechanical engineering at MIT.

If produced on a large scale, this and other nanoarchitected materials could potentially be designed as lighter, tougher alternatives to Kevlar and steel.

“The knowledge from this work… could provide design principles for ultra-lightweight impact resistant materials [for use in] efficient armor materials, protective coatings, and blast-resistant shields desirable in defense and space applications,” says co-author Julia R. Greer, a professor of materials science, mechanics, and medical engineering at Caltech, whose lab led the material’s fabrication.

The team, which reports its results today in the journal Nature Materials, includes David Veysset, Yuchen Sun, and Keith A. Nelson, of MIT’s Institute for Soldier Nanotechnologies and the Department of Chemistry, and Dennis M. Kochmann of ETH Zürich.

From brittle to bendy

A nanoarchitected material consists of patterned nanometer-scale structures that, depending on how they are arranged, can give materials unique properties such as exceptional lightness and resilience. As such, nanoarchitected materials are seen as potentially lighter, tougher impact-resistant materials. But this potential has largely been untested.

“We only know about their response in a slow-deformation regime, whereas a lot of their practical use is hypothesized to be in real-world applications where nothing deforms slowly,” Portela says.

The team set out to study nanoarchitected materials under conditions of fast deformation, such as during high-velocity impacts. At Caltech, they first fabricated a nanoarchitected material using two-photon lithography, a technique that uses a fast, high-powered laser to solidify microscopic structures in a photosensitive resin. The researchers constructed a repeating pattern known as a tetrakaidecahedron — a lattice configuration composed of microscopic struts.

“Historically this geometry appears in energy-mitigating foams,” says Portela, who chose to replicate this foam-like architecture in a carbon material at the nanoscale, to impart a flexible, impact-absorbing property to the normally stiff material. “While carbon is normally brittle, the arrangement and small sizes of the struts in the nanoarchitected material gives rise to a rubbery, bending-dominated architecture.”

After patterning the lattice structure, the researchers washed away the leftover resin and placed it in a high-temperature vacuum furnace to convert the polymer into carbon, leaving behind an ultralight, nanoarchitected carbon material.

Faster than the speed of sound

To test the material’s resilience to extreme deformation, the team performed microparticle impact experiments at MIT using laser-induced particle impact tests. The technique aims an ultrafast laser through a glass slide coated with a thin film of gold, which itself is coated with a layer of microparticles — in this case, 14-micron-wide silicon oxide particles. As the laser passes through the slide, it generates a plasma, or a rapid expansion of gas from the gold, which pushes the silicon oxide particles out in the direction of the laser. This causes the microparticles to rapidly accelerate toward the target.

The researchers can adjust the laser’s power to control the speed of the microparticle projectiles. In their experiments, they explored a range of microparticle velocities, from 40 to 1,100 meters per second, well within the supersonic range.

“Supersonic is anything above approximately 340 meters per second, which is the speed of sound in air at sea level,” Portela says. “So, some experiments achieved twice the speed of sound, easily.”

Using a high-speed camera, they captured videos of the microparticles making impact with the nanoarchitected material. They had fabricated material of two different densities — the less dense material had struts slightly thinner than the other. When they compared both materials’ impact response, they found the denser one was more resilient, and microparticles tended to embed in the material rather than tear straight through.

To get a closer look, the researchers carefully sliced through the embedded microparticles and the materials, and found in the region just below an embedded particle the microscopic struts and beams had crumpled and compacted in response to the impact, but the surrounding architecture remained intact.

“We show the material can absorb a lot of energy because of this shock compaction mechanism of struts at the nanoscale, versus something that’s fully dense and monolithic, not nanoarchitected,” Portela says.

Interestingly, the team found they could predict the kind of damage the material would sustain by using a dimensional analysis framework for characterizing planetary impacts. Using a principle known as the Buckingham-Π theorem, this analysis accounts for various physical quantities, such as a meteor’s velocity and the strength of a planet’s surface material, to calculate a “cratering efficiency,” or the likelihood and extent to which a meteor will excavate a material.

When the team adapted the equation to the physical properties of their nanoarchitected film and the microparticles’ size and velocities, they found the framework could predict the kind of impacts that their experimental data showed.

Going forward, Portela says the framework can be used to predict the impact resilience of other nanoarchitected materials. He plans to explore various nanostructured configurations, as well as other materials beyond carbon, and ways to scale up their production — all with the goal of designing tougher, lighter protective materials.

“Nanoarchitected materials truly are promising as impact-mitigating materials,” Portela says. “There’s a lot we don’t know about them yet, and we’re starting this path to answering these questions and opening the door to their widespread applications.”

###

This research was supported, in part, by the U.S. Office of Naval Research, the Vannevar Bush Faculty Fellowship, and the U.S. Army Research Office through the Institute for Soldier Nanotechnologies at MIT.

Written by Jennifer Chu, MIT News Office

Media Contact
Abby Abazorius
[email protected]

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryMaterialsMechanical EngineeringNanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

October 23, 2025
Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

October 23, 2025

Unlocking Smarter Devices and Safer Drugs: UH Crystals Expert Advances Crystal Formation Control

October 23, 2025

Nanoworld Breakthrough: Heat Transfer Rates Surpass Expectations

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1277 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    167 shares
    Share 67 Tweet 42
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Auditory Change Processing Markers Unusual in Autism

Innovative Center Pioneers Brighter Future for Trauma Survivors

Exploring Vicarious Trauma in Hospice Nurses

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.