• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, July 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

A new reporter mouse line to detect mitophagy changes during muscle tissue loss

Bioengineer by Bioengineer
June 15, 2021
in Biology
Reading Time: 3 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Mitophagy reporter mouse could provide cues for future therapies and rehabilitation strategies

IMAGE

Credit: Niigata University

Niigata, Japan – The loss of muscle tissue – referred to as muscle atrophy in medical terms – can occur as a result of lack of physical activity for an extended period of time; aging; alcohol-associated myopathy – a pain and weakness in muscles due to excessive drinking over long periods of time; burns; injuries; malnutrition; spinal cord or peripheral nerve injuries; stroke; and long-term corticosteroid therapy. While muscle atrophy due to disuse is well known and studied, the underlying cellular mechanisms, particularly the status of mitochondrial degradation by mitophagy during disuse-induced muscle atrophy has been a subject of debate among cellular physiologists as mitochondria are abundant in skeletal muscles.

Mitophagy is a cellular quality control mechanism by which cells break down damaged or dysfunctional subcellular organelles called mitochondria. While mitochondria play a crucial role in cellular energy production among other cellular homeostatic functions, mitochondrial release of reactive oxygen species (ROS) during disuse-induced muscle atrophy has previously been reported. It is thought that ROS oxidizes proteins, lipids, and nucleic acids, leading to decreased protein production and eventually muscle atrophy.

A group of researchers from the Department of Cellular Physiology, Graduate School of Medical and Dental Sciences, Niigata University in collaboration with Taisho Pharmaceutical Co. Ltd. and the National Institute of Quantum and Radiological Science and Technology in Japan have developed a new fluorescent reporter mouse line to detect changes in mitophagy activity that could improve treatment strategies and possibly facilitate strategies to reverse muscle atrophy induced by disuse.

In a mouse model study, the authors devised the in vivo fluorescent approach utilizing a dual mCherry/EGFP (red/green) reporter to enable the visualization of mitochondrial changes in muscle tissue sections from mice whose hind limbs were immobilized (hindlimb IM) (pictured, right). They followed the existence of cytosolic mitochondria with co-expression of green EGFP and red mCherry proteins, however when mitochondria are delivered into lysosomes forming mitolysosomes under mitophagy conditions, the green EGFP protein is quenched and degraded allowing direct analysis of mitophagy activity in vivo.

While there are previous studies where other mitophagy analysis methods have been used, Dr. Keiichi Inoue and Professor Tomotake Kanki have elaborated on how their method is different, saying “Our new reporter mouse line enables to directly analyze the mitophagy activity in vivo. This is more advantageous than the previous indirect methods based on the expression of mitophagy markers as those genes are unspecific to the mitophagy induction.” This dual fluorescent reporter system allowed the direct and specific monitoring of mitophagy activity in vivo.

The authors in their quest to spotlight changes in mitophagy in relation to disuse-induced atrophying muscle assessed the mitophagy activity using new reporter mice. They reported increased levels of mitophagy activity as well as ROS levels in atrophic soleus muscles following a 14-day hindlimb immobilization, revealing that muscle disuse increased mitophagy activity in skeletal muscle.

The study highlights mitophagy as a potential therapeutic target for disuse-induced muscle atrophy. Furthermore, as muscle atrophy is accompanied by physiological aging or some pathological states, such as myopathy or neuropathy, this new model will be helpful to understand and prevent muscle atrophy following those changes.

“We will further reveal the dynamics of mitophagy in other physiological and pathological consequences,” they further added.

###

The article “Mitophagy reporter mouse analysis reveals increased mitophagy activity in disuse-induced muscle atrophy” was published in Journal of Cellular Physiology.
https://onlinelibrary.wiley.com/doi/10.1002/jcp.30404

Media Contact
Tomotake Kanki
[email protected]

Original Source

https://www.niigata-u.ac.jp/en/news/7720/

Related Journal Article

http://dx.doi.org/10.1002/jcp.30404

Tags: BiochemistryBiologyCell BiologyMedicine/HealthMusculatureOrthopedic MedicinePhysiologyRehabilitation/Prosthetics/Plastic SurgerySports Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 26, 2025
Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 26, 2025

Root N-Hydroxypipecolic Acid Circuit Boosts Arabidopsis Immunity

July 26, 2025

Single-Cell Screens Reveal Ebola Infection Regulators

July 26, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    48 shares
    Share 19 Tweet 12
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Durable, Flexible Electrochemical Transistors via Electropolymerized PEDOT

Challenges and Opportunities in High-Filled Polymer Manufacturing

Epicardial Fat: Protector or Threat to Heart Health?

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.