• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, December 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

With bacteria against coral bleaching

Bioengineer by Bioengineer
May 7, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Probiotic approaches could protect corals against heat stress

IMAGE

Credit: A. Roik.

7 May 2021/Kiel. Corals are the backbone of marine ecosystems in the tropics. They are threatened by rising water temperatures caused by global warming and they are among the first ecosystems worldwide that are on the verge of ecological collapse. Coral bleaching, which is becoming stronger and more frequent due to heat stress, has already wiped out corals at many locations globally. With the help of a microbiome-targeting strategy developed by an international team led by GEOMAR Helmholtz Centre for Ocean Research Kiel, it could become feasible to help protect corals from heat stress. The work has now been published in the international journal Microbiome.

Corals are the backbone of marine ecosystems in the tropics. They are threatened by rising water temperatures caused by global warming and they are among the first ecosystems worldwide that are on the verge of ecological collapse. Coral bleaching, which is becoming stronger and more frequent due to heat stress, has already wiped out corals at many locations globally. With the help of a microbiome-targeting strategy developed by an international team led by GEOMAR Helmholtz Centre for Ocean Research Kiel, it could become feasible to help protect corals from heat stress. The work has now been published in the international journal Microbiome.

Images of bare, naked white coral reefs have been increasingly circulating around the world. The typically colourful reefs of tropical oceans, which are home to many species of the marine ecosystem, are suffering from rising water temperatures due to global warming. There is no heat relieve for the corals in sight. Scientists are desperately seeking out ways to make the temperature-sensitive organisms more resistant to heat stress. A group of scientists led by GEOMAR Helmholtz Centre for Ocean Research Kiel are developing a promising approach, which is based on a therapeutic treatment known from human medicine. The study was published in the international journal Microbiome.

“The idea is that probiotic bacteria with beneficial functions could help a coral to better withstand heat stress,” explains Dr Anna Roik from GEOMAR, lead author of the study, which was funded as part of a Future Ocean Network project at Kiel University. “In the current study, we tested the approach of a ‘microbiome transplantation’, inspired by microbiome-based applications we know for example from clinical treatments”, Roik continues.

The research group conducted coral microbiome transplantation experiments with the reef-building corals Pocillopora and Porites in the Andaman Sea in Thailand. They investigated whether this technique can improve the heat resistance of corals by modifying the bacterial microbiome. The scientists first looked for more heat-tolerant “donor” corals. “We then used material from the coral tissue of the donor corals to inoculate conspecific, heat-sensitive recipients and then documented their bleaching responses and microbiome changes using a genetic analysis method called 16S rRNA gene metabarcoding”, explains Dr Roik.

The recipient corals of both species bleached more mildly compared to the control group during a short-term heat stress test (34 °C). “The results show that the inoculated corals were able to resist the heat stress response for a short time”, explains Prof. Dr Ute Hentschel Humeida, head of the Marine Symbioses Research Unit at GEOMAR and co-author of the study. “In addition, the microbiome data suggest that the ‘inoculated’ corals may favour the uptake of putative bacterial symbionts”, Dr Anna Roik continues. “However, further experimental studies are required to unravel the exact mechanism of action, as well as long-term field-based studies to test the durability of the effect”, says the marine biologist, looking ahead.

###

Scientific paper:

Doering, T., M. Wall, L. Putchim, T. Ratanawongwan, R. Schroeder, U. Hentschel, and A. Roik, 2021: Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome 9, 102, https://doi.org/10.1186/s40168-021-01053-6

Links:

http://annaroik.org/#video1 Video about the publication.

Contact:
Dr. Andreas Villwock (GEOMAR, Communication and Media), Phone: +49 0431 600-2802, [email protected]

Media Contact
Anna Roik
[email protected]

Related Journal Article

http://dx.doi.org/10.1186/s40168-021-01053-6

Tags: BiodiversityBiologyClimate ChangeEcology/EnvironmentMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Retrotransposons and Life History Shape Anuran Genome Size

December 23, 2025
Unraveling Coding vs. Non-Coding Genes in Obesity

Unraveling Coding vs. Non-Coding Genes in Obesity

December 22, 2025

Unraveling Sweet Orange’s Response to Boron Deficiency

December 22, 2025

Wnt Gene Family Discovered in Forest Musk Deer

December 22, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionary Micro-CT and AI Evaluate Ovarian Follicles

Analyzing US Clinical Guidelines: Evidence and Recommendations

Validating Chinese Psychological Safety in Simulation Scale

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.