• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Researchers discover novel non-coding RNAs regulating blood vessel formation

Bioengineer by Bioengineer
May 6, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: UEF/ Raija Törrönen

Researchers at the University of Eastern Finland have discovered previously unknown non-coding RNAs (ncRNAs) involved in regulating the gene expression of vascular endothelial growth factors (VEGF), the master regulators of angiogenesis. The study, conducted by the research groups of Associate Professor Minna Kaikkonen-Määttä and Academy Professor Seppo Ylä-Herttuala, provides a better understanding of the complex interplay of ncRNAs with gene regulation, which might open up novel therapeutic approaches in the future. The results were published in the Molecular and Cellular Biology Journal.

Over the past years, the development of next generation sequencing techniques has revealed that around 97% of the human transcriptome is transcribed as non-coding RNAs, and although the role of the vast majority remains uncharacterized, many functions such as gene regulation have been proven.

On the other hand, endothelial growth factors VEGF-A and VEGF-C are the main regulator of angiogenesis, i.e., new blood vessel formation. Due to their important role in vasculature development, they constitute a potential target for the treatment of several diseases, such as atherosclerosis. Therapeutic angiogenesis has been developed as a promising strategy to rescue ischemic tissues by induction of new blood vessels sprouting from existing vasculature but so far, very few results with clinical significance have been achieved. Therefore, a deeper understanding of the regulatory mechanisms underlying the expression of these key angiogenic factors is needed for the future therapeutic avenues.

In this study, researchers performed in-depth characterization of the genomic loci around the VEGFA and VEGFC genes and identified novel non-coding RNAs, in particular enhancer RNAs (eRNAs) and long non-coding RNAs (lncRNAs). While the enhancers clearly upregulated gene expression, lncRNAs demonstrated various functions. Interestingly, lncRNAs were also regulating other targets including factors related to endothelial functions, such as angiogenesis and cell proliferation.

###

This study was funded by the Centre of Excellence in Cardiovascular and Metabolic Diseases, the Academy of Finland, the European Research Council (ERC), Sigrid Jusélius Foundation, the Finnish Foundation for Cardiovascular Research and the Finnish Cultural Foundation.

For further information, please contact:

Academy Research Fellow, Associate Professor Minna Kaikkonen-Määttä, University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, minna.kaikkonen (a) uef.fi, tel. +35840 355 2413, https://uefconnect.uef.fi/en/person/minna.kaikkonen-maatta/

https://uefconnect.uef.fi/en/group/cardiovascular-genomics-kaikkonen-lab/

Assistant Professor Nihay Laham-Karam, University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, nihay.laham-karam (a) uef.fi, tel. +358 40 355 3292

Research article:

Mushimiyimana I, Tomas Bosch V, Niskanen H, Downes N, Moreau P, Hartigan K, Ylä-Herttuala S, Laham-Karam N, Kaikkonen MU. Genomic landscapes of non-coding RNAs regulating VEGFA and VEGFC expression in endothelial cells. Mol Cell Biol. 2021 Apr 19:MCB.00594-20. doi: 10.1128/MCB.00594-20. Epub ahead of print. PMID: 33875575.

Media Contact
Minna Kaikkonen-Määttä
[email protected]

Original Source

https://www.uef.fi/en/article/researchers-discover-novel-non-coding-rnas-regulating-blood-vessel-formation

Related Journal Article

http://dx.doi.org/10.1128/MCB.00594-20

Tags: Medicine/HealthPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Uncovering Key Genes for Histia Rhodope Overwintering

October 16, 2025
From Caraway to Cure: Crafting CBD-Inspired Seizure Therapies Without Cannabis

From Caraway to Cure: Crafting CBD-Inspired Seizure Therapies Without Cannabis

October 16, 2025

Impact of Testosterone Therapy on Transgender Cardiovascular Health

October 16, 2025

Study Reveals How Ants Modify Their Nest Networks to Halt Epidemic Spread

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1248 shares
    Share 498 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    105 shares
    Share 42 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Uncovering Key Genes for Histia Rhodope Overwintering

Nutritional Index and Hgb/RDW Impact Pneumonia Morbidity

Three Supplements Show Promising Anti-Inflammatory Benefits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.