• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, September 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Heart cells cozy up to prevent deadly arrhythmias

Bioengineer by Bioengineer
May 4, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Fralin Biomedical Research Institute at VTC researchers show subtle changes regulate heartbeats

IMAGE

Credit: Clayton Metz/Virginia Tech

Blood may seem like a simple fluid, but its chemistry is complex. When too much potassium, for instance, accumulates in the bloodstream, patients may experience deadly irregular heart rhythms.

Cardiovascular scientists at Virginia Tech’s Fralin Biomedical Research Institute at VTC are studying why.

In a new study, published in Pflügers Archiv European Journal of Physiology, the research team led by Steven Poelzing, associate professor at the institute, describes how subtle changes in potassium, calcium, and sodium levels regulate heartbeats.

Poelzing says that the results could help researchers and physicians understand the nuances of cardiac arrythmias, as well as a group of genetic disorders that impact sodium channel function, such as Brugada syndrome.

The scientists elevated blood potassium in guinea pigs, creating a condition called hyperkalemia, which causes some of the heart’s key electrical conduits, sodium channels, to shut down. Next, they increased calcium levels and observed the heart muscle cells pressing closer together. This miniscule motion – spanning mere nanometers – helps preserve electrical conduction in the heart.

“We know the heart is extremely sensitive to changes in blood electrolyte levels, but until recently we didn’t have a great picture of how the heart’s molecular landscape is remodeled, and how these muscle cells adapt,” said Poelzing, who is also an associate professor in the Virginia Tech College of Engineering’s department of biomedical engineering and mechanics.

Heart muscle cells primarily pass electrical signals via a network of protein bridges called gap junctions and sodium channels. These pathways let nutrients and positively charged minerals flow between cells. When there are too many positively charged potassium ions in the blood, however, the cells get overstimulated and temporarily block signaling channels.

“This can be dangerous when sodium channels get stuck in a half-closed state. The cell isn’t dying, but it’s not as electrically active as it once was. This can cause dangerous heart arrythmias and sudden cardiac death,” Poelzing said.

When the heart’s core electrical pathways falter, heart muscle cells press closer together, allowing them to sense subtle electric fields generated by neighboring cells. This secondary form of cell-to-cell signaling is known as ephaptic coupling.

“Ephaptic coupling appears to address the effects of a functional loss of sodium channels, in this case caused by high potassium, and helps keep the current flowing properly across the heart muscle,” Poelzing said.

Over the course of the eight-year study, Poelzing’s team tested different concentrations of sodium and calcium to treat the electrical defects associated with high potassium to see how the heart would respond. They discovered that increasing sodium and calcium levels together greatly reduced the distances between cells, providing a substantial improvement in cardiac conduction.

In the clinic, human patients with hyperkalemia who develop abnormal heart rhythms are administered intravenous calcium gluconate. Poelzing’s findings help explain why elevating calcium levels under these certain clinical conditions is beneficial.

“What surprised me is that such small changes in electrolyte values have such dramatic effects,” said Ryan King, the study’s first author and a postdoctoral research associate in the lab of Scott Johnstone, an assistant professor at the Fralin Biomedical Research Institute. “The ranges of sodium, calcium, and potassium we used in this study are not exaggerated, extreme ionic conditions that you’d never find in a clinical setting. They’re all within ranges that could show up in metabolic blood panels.”

###

King worked in Poelzing’s lab for more than four years while completing his Translational Biology, Medicine, and Health (TBMH) doctoral degree at Virginia Tech.

Alexandra Hanlon, director of the Virginia Tech Center for Biostatistics and Health Data Science (CBHDS) and professor of practice in statistics, and Ian Crandell, CBHDS research scientist, oversaw the study’s statistical strategy.

The study’s other contributing authors included Michael Entz II, an engineer at Cook Medical who was a graduate student mentored by Poelzing during the study; Grace Blair, a TBMH graduate student; and Gregory Hoeker, a research assistant professor in Poelzing’s lab.

The research was funded by National Institutes of Health grants awarded to King, and Poelzing. The work done by CBHDS for this research was supported by the NIH’s National Center for Advancing Translational Sciences Clinical and Translational Science Award (CTSA) to the integrated Translational Health Research Institute of Virginia (iTHRIV). iTHRIV represents a partnership between Virginia Tech, the University of Virginia, Carilion Clinic, and Inova Health.

Media Contact
Whitney Slightham
[email protected]

Original Source

https://vtnews.vt.edu/articles/2021/05/mind-the-gap–heart-cells-cozy-up-to-prevent-deadly-arrhythmias-.html

Related Journal Article

http://dx.doi.org/10.1007/s00424-021-02537-y

Tags: BiologyCardiologyCell BiologyChemistry/Physics/Materials SciencesMedicine/HealthMolecular Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Insights into Day Program Treatment for Anorexia Caregivers

September 28, 2025

Key Insights on End-of-Life Communication in Nursing

September 28, 2025

Tetraspanins: Key Players in Organ Fibrosis Therapy

September 28, 2025

Specialized Singing Programs Enhance Symptoms and Quality of Life for Individuals with Lung Disease

September 28, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    85 shares
    Share 34 Tweet 21
  • Physicists Develop Visible Time Crystal for the First Time

    72 shares
    Share 29 Tweet 18
  • Scientists Discover and Synthesize Active Compound in Magic Mushrooms Again

    56 shares
    Share 22 Tweet 14
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    54 shares
    Share 22 Tweet 14

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Radiopharmaceutical Combined with Stereotactic Radiation Slows Progression of Oligometastatic Prostate Cancer

Low-Dose Radiation Therapy Provides Significant Relief for Painful Knee Osteoarthritis

ASTRO: Innovative Therapy Slows Progression of Recurrent Prostate Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.