• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Study identifies new targets in the angiogenesis process

Bioengineer by Bioengineer
April 16, 2021
in Health
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Universidad de Sevilla

Angiogenesis is a process of new vessel formation that is activated both in physiological (tissue repair, reproduction, etc.) and pathological (myocardial infarction, diabetic retinopathy, cancer, etc.) conditions. The process is carried out by endothelial cells and includes their proliferation, migration and arrangement in tubes. Angiogenesis regulation is precise and is mainly mediated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which in turn promote different signalling pathways leading to an increase of intracellular Ca2+ concentrations.

The researchers from the Cardiovascular Pathophysiology group at the Institute of Biomedicine of Seville (IBiS) focused on precisely this point, demonstrating that the inhibition of certain proteins involved in the pathway’s regulation drastically affects the proper development of blood vessels. Specifically, these researchers demonstrated, for the first time, the involvement of SARAF, a SOCE regulatory protein, and Orai1, a subunit that forms the pore of the SOCE channel, in the VEGF-mediated activation of endothelial cells. Likewise, the research group has shown the importance of this Ca2+ pathway in the formation of new vessels and in the development of retinal vascularisation in neonatal mice. Thus, Orai1 and SARAF can be viewed as targets for the design of therapeutic strategies that could control angiogenesis in pathological situations such as cancer or retinopathies, or physiological situations such as post-infarction cardiac neovascularisation.

The study was funded by Spain’s Agencia Estatal de Investigación (State Research Agency) and was the result of collaboration with Dr. Rosado of the University of Extremadura, and with Dr. Khatib of the University of Bordeaux – LAMC INSERM 1029, France.

###

Media Contact
Antonio ORdonez
[email protected]

Original Source

https://www.frontiersin.org/articles/10.3389/fcell.2021.639952/full

Related Journal Article

http://dx.doi.org/10.3389/fcell.2021.639952

Tags: HematologyMedicine/HealthPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Clinical Trial Launches to Enhance Seizure Monitoring and Revolutionize Epilepsy Diagnosis

October 16, 2025

Olorofim: Promising New Weapon Against Helicobacter Pylori

October 16, 2025

Ex-Smokers Who Relapse May Just Be Worn Out by Quitting Efforts, Study Finds

October 16, 2025

RUBI: Supporting Autistic Students in Schools Trial

October 16, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1249 shares
    Share 499 Tweet 312
  • New Study Reveals the Science Behind Exercise and Weight Loss

    106 shares
    Share 42 Tweet 27
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    102 shares
    Share 41 Tweet 26
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    92 shares
    Share 37 Tweet 23

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Clinical Trial Launches to Enhance Seizure Monitoring and Revolutionize Epilepsy Diagnosis

Long-Necked Early Dinosaur Unearthed in Andes

Olorofim: Promising New Weapon Against Helicobacter Pylori

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.