• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Novel diarylamides as orally active diuretics targeting urea transporters

Bioengineer by Bioengineer
April 8, 2021
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Acta Pharmaceutica Sinica B

Discovery of novel diarylamides as orally active diuretics targeting urea transporters

Urea transporters (UT) play a vital role in the mechanism of urine concentration and are recognized as novel targets for the development of salt-sparing diuretics. Thus, UT inhibitors are promising for development as novel diuretics. In this study the authors discovered a novel UT inhibitor with a diarylamide scaffold by high-throughput screening. Optimization of the inhibitor led to the identification of a promising preclinical candidate, N-[4-(acetylamino)phenyl]-5-nitrofuran-2-carboxamide (1H), with excellent in vitro UT inhibitory activity at the submicromolar level. The half maximal inhibitory concentrations of 1H against UT-B in mouse, rat, and human erythrocyte were 1.60, 0.64, and 0.13 μmol/L, respectively.

Further investigation suggested that 8 μmol/L 1H more powerfully inhibited UT-A1 at a rate of 86.8% than UT-B at a rate of 73.9% in MDCK cell models. Most interestingly, the authors found for the first time that oral administration of 1H at a dose of 100 mg/kg showed superior diuretic effect in vivo without causing electrolyte imbalance in rats. Additionally, 1H did not exhibit apparent toxicity in vivo and in vitro, and possessed favorable pharmacokinetic characteristics. 1H shows promise as a novel diuretic to treat hyponatremia accompanied with volume expansion and may cause few side effects.

###

Article reference: Shun Zhang, Yan Zhao, Shuyuan Wang, Min Li, Yue Xu, Jianhua Ran, Xiaoqiang Geng, Jinzhao He, Jia Meng, Guangying Shao, Hong Zhou, Zemei Ge, Guangping Cheng, Runtao Li, Baoxue Yang, Discovery of novel diarylamides as orally active diuretics targeting urea transporters, Acta Pharmaceutica Sinica B, 2021, ISSN 2211-3835, https://doi.org/10.1016/j.apsb.2020.06.001

Keywords: Urea transporter inhibitor, Diuretic, Structure optimization, Oral administration

The Journal of the Institute of Materia Medica, the Chinese Academy of Medical Sciences and the Chinese Pharmaceutical Association.

Acta Pharmaceutica Sinica B (APSB) is a monthly journal, in English, which publishes significant original research articles, rapid communications and high-quality reviews of recent advances in all areas of pharmaceutical sciences — including pharmacology, pharmaceutics, medicinal chemistry, natural products, pharmacognosy, pharmaceutical analysis and pharmacokinetics.
For more information please visit https://www.journals.elsevier.com/acta-pharmaceutica-sinica-b/

Editorial Board: https://www.journals.elsevier.com/acta-pharmaceutica-sinica-b/editorial-board

APSB is available on ScienceDirect.

Submissions to APSB may be made using Editorial Manager®.

CiteScore: 10.5

Impact Factor: 7.097

5-Year Impact Factor: 7.865

Source Normalized Impact per Paper (SNIP): 2.210

SCImago Journal Rank (SJR): 1.792

ISSN 2211-3835

Media Contact
Morgan lyons
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.apsb.2020.06.001

Tags: Medicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Quinoline Triazoles: Antimicrobial Strategies Against Biofilms

August 27, 2025

Exploring Aged Garlic Extract’s Effects on Oral Bacteria

August 27, 2025

Blood and Fluid Signatures Predict IVF Embryo Success

August 27, 2025

Enhancing 3D-Printed Biphasic Scaffolds with Hourglass Design

August 27, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nucleotides: Key Nutrients for Healthy Laying Hens

68Ga-FAPI-04 PET/CT vs. CECT for Peritoneal Metastases

Quinoline Triazoles: Antimicrobial Strategies Against Biofilms

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.