• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

A divided visual field

Bioengineer by Bioengineer
March 23, 2021
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: (Image: Anna Stoeckl / University of Wuerzburg)

Hummingbird hawkmoths are small insects that hover in the air like hummingbirds when drinking nectar from flowers. Dr. Anna Stöckl from the Biocentre of the Julius-Maximilians-Universität (JMU) Würzburg in Bavaria, Germany, is studying the visual performance of these insects. Dr. Stöckl and her doctoral student Ronja Bigge now present their latest findings in the journal Current Biology.

“To control their flight, hummingbird hawkmoths rely on optic flow in the lower half of their visual field,” Ronja Bigge explains. Optic flow is the relative motion that the surrounding image casts on the animals’ retinas when they fly. We experience this phenomenon ourselves when travelling by train – the landscape passing by the train windows allows us to estimate our speed, for example.

For hawkmoths, the optic flow also provides information about their own movement. It helps them to control the straightness and speed of their flight. The JMU researchers have now shown with outdoor measurements that the optic flow components parallel to the direction of flight are always strongest below the hawkmoths’ body. This is where the insects see meadows, gardens and streets that provide a varied texture. For flight control, what happens in the lower visual field is therefore the most reliable parameter.

Previously unknown behaviour discovered

“Surprisingly, we were able to show that the hawkmoths displayed a completely different and novel behaviour when we presented them with visual textures in the upper half of their visual field,” says Anna Stöckl.

The animals then oriented themselves along prominent contours in the patterns. Thus, they did not use the visual information for flight control, but for orientation – although the visual patterns were exactly the same as the ones that were previously presented in the lower half of their visual field.

“Our optical measurements in natural habitats showed a comparable relationship: high-contrast structures that can be used for orientation occur primarily in the upper half of the visual field,” says the JMU researcher. These are, for example, the silhouettes of treetops or bushes that form a strong contrast with the sky.

Visual field is divided in two

The conclusion of the Würzburg biologists: “The flight control system and the orientation system of the hummingbird hawkmoth divide the visual field among themselves and focus on the respective area that provides the most reliable information in their natural habitats.”

In other words, it is not only important what the animals see, but also where they see it.

###

Media Contact
Dr. Anna Stoeckl
[email protected]

Original Source

https://go.uniwue.de/div-vis-field

Related Journal Article

http://dx.doi.org/10.1016/j.cub.2021.02.022

Tags: BiologyEntomologyPhysiologyZoology/Veterinary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

August 23, 2025
Brain-Delivered Antibody Targets Alpha-Synuclein Aggregates

Brain-Delivered Antibody Targets Alpha-Synuclein Aggregates

August 23, 2025

Multi-Omics Reveal Nerve Macrophages in Polyneuropathy

August 23, 2025

Optimizing Basal Insulin Titration: Digital Solutions in India

August 23, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    141 shares
    Share 56 Tweet 35
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    114 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    60 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Moderate Warming on Soil Microbial Decomposition

Inside CNS Solitary Fibrous Tumors: Genetics and Therapies

Brain-Delivered Antibody Targets Alpha-Synuclein Aggregates

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.