• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New basalt type discovered beneath the ocean

Bioengineer by Bioengineer
March 22, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: EXP 351 Science Team

A new type of rock created during large and exceptionally hot volcanic eruptions has been discovered beneath the Pacific Ocean.

An international team of researchers including the University of Leeds unearthed the previously unknown form of basalt after drilling through the Pacific ocean floor.

The discovery suggests that ocean floor eruptions sourced in the Earth’s mantle were even hotter and more voluminous than previously thought. Report co-author is Dr Ivan Savov, of Leeds’ Institute of Geophysics and Tectonics, in the university’s School of Earth and Environment.

He said: “In an era when we rightly admire discoveries made through space exploration, our findings show there are still many discoveries still to make on our own planet.

“The rocks that we recovered are distinctly different to rocks of this type that we already know about. In fact, they may be as different to Earth’s known ocean floor basalts as Earth’s basalts are to the Moon’s basalts.

“Now that we know where and how this rock type is formed, we anticipate that many other rocks that we know were originally formed by ocean floor eruptions will be re-examined and potentially alter our wider understanding of the basalt formation.”

The newly-discovered basalt is distinct from known rocks in both its chemical and mineral makeup.

Its existence was previously not known because no new examples have been formed in millions of years. As a result, the new basalt type lay buried deep beneath sediment at the bottom of the ocean.

To find the new rock, the research team, aboard the Research Vessel (RV) JOIDES “Resolution”, sank their drilling equipment 6km down to the ocean floor of the Amami Sankaku Basin – about 1,000km southwest of Japan’s Mount Fuji volcano.

They then drilled a further 1.5km into the ocean floor, extracting samples that had never before been examined by scientists.

The research area was part of the birth of the “Ring of Fire” – a horseshoe-shaped belt known for regular volcanic eruptions and earthquakes. It stretches about 40,000 km around the Pacific, and is thought to have begun forming at least 50 million years ago.

Dr Savov explained: “This was one of the deepest waters ever to be considered for drilling, using a research vessel specifically designed for such challenging deep sea environments.

“Basalt is among the most common type of rock on earth. We were looking for basalt that was formed during early Ring of Fire volcanic eruptions.”.

The eruptions that created the newly-discovered basalt were very widespread (covering areas the size of western Europe) and occurred in a relatively short geological timescale of between 1-2 million years.

###

The research team’s findings have been published in Nature Communications. The team included scientists from Australia, Japan, USA, Germany, UK, China, and Switzerland.

Further information

Basalt derived from highly refractory mantle sources during early Izu-Bonin-Mariana arc development is published by Nature Communications. DOI: 10.1038/s41467-021-21980-0

The research was part of the International Ocean Discovery Program (IODP).

Dr Savov was funded by the Natural Environment Research Council.

The research team also included: Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Research School of Earth Sciences, Australian National University, Canberra, Australia; Geological Survey of Japan/AIST, Tsukuba, Ibaraki, Japan; Department of Earth & Environment, AHC5-394, Florida International University, Miami, USA; Department of Earth & Ocean Sciences, University of South Carolina, Columbia, USA; Institute of Earth Sciences, University of Lausanne, Switzerland; School of Earth Sciences, University of Bristol, UK; GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany; College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, USA.

Picture credit: Exp. 351 Science Team

For further details, contact Ian Rosser in the University of Leeds press office on [email protected]

Media Contact
Ian Rosser
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41467-021-21980-0

Tags: Earth ScienceGeology/SoilGeophysicsOceanographyPlate TectonicsTemperature-Dependent Phenomena
Share12Tweet8Share2ShareShareShare2

Related Posts

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

Surprisingly Elevated Levels of Forever Chemicals Discovered in Deceased Sea Otters

November 4, 2025
Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

Next-Generation Satellite Mega-Constellations Empowered by Advanced Laser Links

November 3, 2025

Breakthrough “Self-Tuning” Film Sets Stage for Next-Generation Wireless and Radar Technologies

November 3, 2025

From Shielding to Speed: Scientists Reveal Hidden Chemistry Powering Record-Breaking Sodium-Chlorine Batteries

November 3, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1297 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Insights into Drug-Facilitated Sexual Assault Cases

Pest Dynamics and Climate: Sustainable Solutions for Kagera Sugar

Globalizing Vignette Learning with Language Models

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.