• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Vape aerosol and gene expression in human lung tissue compared to cigarette sm

Bioengineer by Bioengineer
March 19, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientific Digital Communications Editor Arran Frood details the latest research findings at Imperial Brands.

IMAGE

Credit: Imperial Brands

March 19, 2021, Bristol, UK – A new peer-reviewed study published in the journal Toxicological Research & Application shows acute exposure of a 3D human bronchial tissue model to e-cigarette aerosol has minimal impact on gene expression compared to smoke from combustible cigarettes.

The research involved sub-cytotoxic exposure to cells in a 3D human bronchial model (MucilAirTM) to nicotine-containing vape aerosol, combustible cigarette smoke and fresh air control under strict laboratory conditions.

The highly sensitive Toxicity Testing in the Twenty-First Century (TT21C)-based technique allows researchers to gain a mechanistic understanding of the potential effects of exposure to vape aerosol and 3R4F (reference cigarette) smoke, without experiencing other processes that may be triggered by significantly higher exposures – including cell death – that could potentially make interpretation of results difficult.

After cell ‘recovery’ periods of 4 and 48 hours, scientists assessed the expression of a variety of genes to determine if any were increased or decreased by the single exposure.

“Within this model, exposure to combustible cigarette smoke triggered significant changes in gene expression, indicating – amongst other effects – changes in oxidative stress and inflammation markers,” confirmed Matt Stevenson, Pre-Clinical Toxicology Manager at Imperial Brands. “Conversely, the vape aerosol generated only a minimal response, similar to that observed in the air control.”

Principal Toxicologist at Imperial Dr Liam Simms added: “Gene set enrichment analysis examining those genes most over/under expressed were compared across five key pathways – cell cycle, apoptosis, p53 signaling, cell death and NF-KappaB signaling [a protein complex that controls transcription of DNA, cytokine production and cell survival].

Focusing on the 3R4F reference cigarette, no pathways were activated after four hours exposure, but at 48 hours the cells had both genes associated with cell cycle and cell death pathways activated. Conversely, those cells exposed to vape aerosol demonstrated slightly elevated NF-KappaB signaling pathways after four hours exposure. However, at 48 hours no pathways were activated.”

The results from this study show, that under the conditions of test, acute exposure to vape aerosol had less impact on gene expression in human lung cells in vitro than the equivalent dose of cigarette smoke.

“This latest research adds to the growing body of research gathered by both Imperial Brands and others, demonstrating the considerable harm reduction potential of Next Generation Products (NGPs) like vapes compared to continued combustible cigarette smoking,” said Dr Grant O’Connell, Head of Tobacco Harm Reduction Science at Imperial.

“We encourage regulators and policy makers to consider the weight of evidence that shows the clear scientific differences between combustible cigarettes, which burn tobacco, and potentially harm-reduced NGPs that do not,” he concluded.

###

Imperial Brands remains committed to undertaking high quality scientific research on potentially less harmful nicotine product alternatives to combustible tobacco for adult smokers.

Media Contact
Arran Frood
[email protected]

Original Source

https://imperialbrandsscience.com/timeline/press-release-vape-aerosol-and-gene-expression-in-human-lung-tissue-compared-to-cigarette-smoke/

Related Journal Article

http://dx.doi.org/10.1177/2F2397847320988496

Tags: BiochemistryCell BiologyGenesMedicine/HealthMolecular BiologyPharmaceutical SciencesPhysiologyToxicology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Evaluating Pediatric Emergency Care Quality in Ethiopia

TPMT Expression Predictions Linked to Azathioprine Side Effects

Improving Dementia Care with Enhanced Activity Kits

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.