• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Targeting mechanosensitive protein could treat pulmonary fibrosis, study suggests

Bioengineer by Bioengineer
March 10, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©2021 Qu et al. Originally published in Journal of Experimental Medicine. https://doi.org/10.1084/jem.20202033

Researchers at the University of Alabama at Birmingham have identified a new molecular target that could potentially treat the deadly, aging-related lung disease idiopathic pulmonary fibrosis (IPF). The study, which will be published March 10 in the Journal of Experimental Medicine (JEM), suggests that targeting a protein called MDM4 could prevent respiratory failure by initiating a genetic program that removes scar tissue from the lungs.

IPF is characterized by the accumulation of scar tissue that stiffens the lungs and makes it difficult for patients to breathe and get sufficient oxygen into their blood. Though the causes of IPF remain unclear, age is a significant risk factor: the disease is estimated to affect 1 in 200 US adults over the age of 70.

The scars are thought to arise from a runaway wound healing process in which lung cells deposit excessive amounts of collagen into their surroundings, stiffening the lung tissue and activating highly contractile cells called myofibroblasts. These myofibroblasts produce still more collagen fibers and stiffen the tissue even further.

“Lung fibrosis resolution is thought to involve degradation of excessive collagen, removal of myofibroblasts, and regeneration of normal lung tissue by stem cells,” says Yong Zhou, an associate professor in the Department of Medicine, University of Alabama at Birmingham. “However, the mechanisms underlying the reversal of lung fibrosis remain poorly understood.”

Zhou and colleagues, including first author Jing Qu, discovered that the levels of a protein called MDM4 are elevated in the myofibroblasts of IPF patients and are also increased in aged mice with pulmonary fibrosis. The researchers found that the protein is produced in response to the increased stiffness associated with IPF.

MDM4 is known to inhibit a key transcription factor called p53. Zhou and colleagues found that reducing MDM4 levels activates a p53-dependent genetic program that makes myofibroblasts more likely to die and be removed from fibrotic tissues. Removing the Mdm4 gene from collagen-producing fibroblasts and myofibroblasts promoted the resolution of lung fibrosis in aged mice.

The researchers also found that treating mice with chebulic acid, a naturally occurring compound that removes the chemical cross-links between collagen fibers, could soften fibrotic tissue, increase enzyme-mediated collagen degradation, and reduce MDM4 levels, again resulting in the resolution of lung fibrosis.

“Targeting the mechanical properties of the lung microenvironment represents a promising strategy for anti-fibrotic therapy,” says Zhou. “Our study identifies MDM4 as a mechanosensitive protein and a novel molecular target in pulmonary fibrosis and highlights the therapeutic potential of targeting collagen cross-linking to reverse persistent lung fibrosis associated with aging.”

###

Qu et al. 2021. J. Exp. Med. https://rupress.org/jem/article-lookup/doi/10.1084/jem.20202033?PR

About Journal of Experimental Medicine

Journal of Experimental Medicine (JEM) publishes peer-reviewed research on immunology, cancer biology, stem cell biology, microbial pathogenesis, vascular biology, and neurobiology. All editorial decisions on research manuscripts are made through collaborative consultation between professional scientific editors and the academic editorial board. Established in 1896, JEM is published by Rockefeller University Press, a department of The Rockefeller University in New York. For more information, visit jem.org.

Visit our Newsroom, and sign up for a weekly preview of articles to be published. Embargoed media alerts are for journalists only.

Follow JEM on Twitter at @JExpMed and @RockUPress.

Media Contact
Ben Short
[email protected]

Original Source

https://rupress.org/jem/article-lookup/doi/10.1084/jem.20202033?PR

Related Journal Article

http://dx.doi.org/10.1084/jem.20202033

Tags: AgingBiochemistryCell BiologyGenesGerontologyMedicine/HealthPulmonary/Respiratory Medicine
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025
Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    46 shares
    Share 18 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

AI Predicts Sinus Surgery Outcomes from Images

Watch-and-Wait After Immuno-Chemotherapy in NPC

Fat Cell N-Acetylaspartate Controls Post-Meal Body Temperature

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.