• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, January 11, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Advance in ‘optical tweezers’ to boost biomedical research

Bioengineer by Bioengineer
March 4, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr Fan Wang

Much like the Jedis in Star Wars use ‘the force’ to control objects from a distance, scientists can use light or ‘optical force’ to move very small particles.

The inventors of this ground-breaking laser technology, known as ‘optical tweezers’, were awarded the 2018 Nobel Prize in physics.

Optical tweezers are used in biology, medicine and materials science to assemble and manipulate nanoparticles such as gold atoms. However, the technology relies on a difference in the refractive properties of the trapped particle and the surrounding environment.

Now scientists have discovered a new technique that allows them to manipulate particles that have the same refractive properties as the background environment, overcoming a fundamental technical challenge.

The study ‘Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles’ has just been published in Nature Nanotechnology.

“This breakthrough has huge potential, particularly in fields such as medicine,” says leading co-author Dr Fan Wang from the University of Technology Sydney (UTS).

“The ability to push, pull and measure the forces of microscopic objects inside cells, such as strands of DNA or intracellular enzymes, could lead to advances in understanding and treating many different diseases such as diabetes or cancer.

“Traditional mechanical micro-probes used to manipulate cells are invasive, and the positioning resolution is low. They can only measure things like the stiffness of a cell membrane, not the force of molecular motor proteins inside a cell,” he says.

The research team developed a unique method to control the refractive properties and luminescence of nanoparticles by doping nanocrystals with rare-earth metal ions.

Having overcome this first fundamental challenge, the team then optimised the doping concentration of ions to achieve the trapping of nanoparticles at a much lower energy level, and at 30 times increased efficiency.

“Traditionally, you need hundreds of milliwatts of laser power to trap a 20 nanometre gold particle. With our new technology, we can trap a 20 nanometre particle using tens of milliwatts of power,” says Xuchen Shan, first co-author and UTS PhD candidate in the UTS School of Electrical and Data Engineering.

“Our optical tweezers also achieved a record high degree of sensitivity or ‘stiffness’ for nanoparticles in a water solution. Remarkably, the heat generated by this method was negligible compared with older methods, so our optical tweezers offer a number of advantages,” he says.

Fellow leading co-author Dr Peter Reece, from the University of New South Wales, says this proof-of-concept research is a significant advancement in a field that is becoming increasingly sophisticated for biological researchers.

“The prospect of developing a highly-efficient nanoscale force probe is very exciting. The hope is that the force probe can be labelled to target intracellular structures and organelles, enabling the optical manipulation of these intracellular structures,” he says.

Distinguished Professor Dayong Jin, Director of the UTS Institute for Biomedical Materials and Devices (IBMD) and a leading co-author, says this work opens up new opportunities for super resolution functional imaging of intracellular biomechanics.

“IBMD research is focused on the translation of advances in photonics and material technology into biomedical  applications, and this type of technology development is well aligned to this vision,” says Professor Jin.

“Once we have answered the fundamental science questions and discovered new mechanisms of photonics and material science, we then move to apply them. This new advance will allow us to use lower-power and less-invasive ways to trap nanoscopic objects, such as live cells and intracellular compartments, for high precision manipulation and nanoscale biomechanics measurement.”

###

Media Contact
Leilah Schubert
[email protected]

Original Source

https://www.uts.edu.au/news/tech-design/advance-optical-tweezers-boost-biomedical-research

Related Journal Article

http://dx.doi.org/10.1038/s41565-021-00852-0

Tags: Atomic/Molecular/Particle PhysicsBiomechanics/BiophysicsBiomedical/Environmental/Chemical EngineeringBiotechnologyChemistry/Physics/Materials SciencesMaterialsMolecular BiologyNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

Trypanosoma cruzi’s Genome Unveils 32 Chromosomes, 3 Compartments

Trypanosoma cruzi’s Genome Unveils 32 Chromosomes, 3 Compartments

January 11, 2026
Unlocking Sperm Motility: Insights from Chicken Genetics

Unlocking Sperm Motility: Insights from Chicken Genetics

January 11, 2026

Exploring Heterosis in Abaca BC2 Hybrid Dioscoro 1

January 10, 2026

OFP Gene Family in Soybean: Height and Salinity Insights

January 10, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    50 shares
    Share 20 Tweet 13
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12
v>

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Developing Eye Care Guidelines for Prone Ventilation

Guillain-Barré Syndrome Linked to TNF Inhibitor in Blau

Dual Nanocarriers Target Smad3 and Runx2 in Aortic Valve Disease

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.