• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

The jaws of life – how hypoxia exposure affects jaw cartilage growth

Bioengineer by Bioengineer
March 1, 2021
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Department of Orthodontic Science,TMDU

Researchers from Tokyo Medical and Dental University (TMDU) observe underdeveloped jaw cartilage in newborn rats exposed to periods of low oxygen

Tokyo, Japan – Breathing in adequate amounts of oxygen is critical for human life. However, certain disorders can cause individuals to go through periods where they are exposed to periodical low levels of oxygen, called intermittent hypoxia (IH). This is common in people who suffer from some sleep disorders like obstructive sleep apnea. Although we know IH can cause neurological development issues, it is not clear how it affects cartilage. Now, researchers at Tokyo Medical and Dental University (TMDU) have shown that IH can result in underdeveloped jaw cartilage in rats.

In an article published in Scientific Reports, researchers from TMDU revealed the inhibitory effects of IH on the growth of cells in the condylar cartilage of the mandible, which is the cartilage found at the rounded end of the jawbone. Previous work had primarily focused on how IH affects only bone growth.

Cartilage within different parts of the body often displays varying metabolic characteristics. Studies have shown that cartilage in the jaw has different growth patterns and gene expression profiles compared with cartilage in the limbs, for example. Because of this, the TMDU group became interested in how IH affects both mandibular cartilage and tibial (shinbone) cartilage. They compared both areas by examining growth of cartilage cells, called chondrocytes. The researchers also investigated the expression levels of specific genes in the cartilage cells that could help them recognize what phase of growth they were in.

“It is very important to understand more about the effects of intermittent hypoxia because it can lead to significant developmental issues,” says lead author the study Kochakorn Lekvijittada. “It can even precede sudden infant death syndrome (SIDS) – a terrifying and tragic event that has sadly affected many families worldwide.”

To address their questions, the researchers used newborn rats as a model system. They exposed one group of 1-week-old rats to air with normal amounts of oxygen, while another group of rats was exposed to alternating cycles of air with low oxygen levels. The researchers then investigated the effects on the rats’ jaw and tibial cartilage growth.

“We observed inhibited growth of the cartilage in the rat jaws,” describes Professor Takashi Ono, senior author. “Interestingly, the tibial cartilage was not affected by the hypoxic air exposure.”

The authors also saw decreased expression levels of two genes called TGF-β and SOX9 in the jaw cartilage of the rats exposed to IH, while another gene named collagen X displayed increased expression.

“The gene expression patterns we observed in the jaw cartilage of the rats exposed to hypoxia were consistent with hypertrophy,” says Dr. Lekvijittada. “This indicates that the jaw cartilage had restricted growth. We did not see these patterns in the tibial cartilage.”

The findings of this study deliver novel insight into how being exposed to periods of low oxygen levels can affect jaw cartilage growth and development with potential applications in orthopedic medicine and diagnosis of temporomandibular disorders. This work also provides further understanding of how cartilage throughout the body differs depending on its location.

###

The article, “Intermittent hypoxia inhibits mandibular cartilage growth with reduced TGF-β and SOX9 expressions in neonatal rats,” was published in Scientific Reports at DOI: 10.1038/s41598-020-80303-3

Media Contact
Jun HOSOMICHI
[email protected]

Original Source

http://www.tmd.ac.jp/english/press-release/20210114-1/index.html

Related Journal Article

http://dx.doi.org/10.1038/s41598-020-80303-3

Tags: GenesMedicine/HealthMolecular BiologyPhysiology
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    50 shares
    Share 20 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Motor Interventions Improve Children’s Coordination: New Study

Deep Learning Advances Gastric Cancer Image Analysis

Metal–Sulfur Sites Boost MOF Hydrogenation Catalysis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.