• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Professor developing indoor COVID-19 detector

Bioengineer by Bioengineer
February 25, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Gerardine Botte received a grant from the U.S. Department of Defense to work on the project.

IMAGE

Credit: Texas Tech University

Carbon monoxide is a colorless, odorless gas that can cause headaches, dizziness and even death in certain circumstances. Since this potentially deadly gas is so elusive and dangerous, many homes across the U.S. have carbon monoxide detectors to warn residents of its presence. So, what if that same technology could be used to detect invisible, dangerous and potentially deadly pathogens like pandemic-causing COVID-19?

Gerardine “Gerri” Botte, a professor and Whitacre Department Chair in the Department of Chemical Engineering through Texas Tech University’s Edward E. Whitacre Jr. College of Engineering, received a $999,047 grant from the U.S. Department of Defense’s Defense Advanced Research Projects Agency (DARPA) to study just that.

“I have developed a sensor, which we have demonstrated can detect the passing of SARS-CoV-2,” Botte said. “We have done it in saliva and in water, and it’s very fast. It happens within less than a second. In this project, we propose ways to extend the sensor that has worked so well in these media into collecting from air. Ideally, by the time this project concludes, we should be able to develop a prototype that will be tested for determining the presence of SARS-CoV-2 in air.”

The idea behind the project is to develop an indoor COVID-19 sensor, like a carbon monoxide detector, that can detect traces of COVID-19 and other airborne viruses. Knowing if COVID-19 has been detected in a building can help mitigate the spread.

“If you detect it early, you could do surveillance,” Botte said. “You could be able to say, ‘OK, there is a certain contamination in this building,’ then you could potentially close and isolate that building. You could detect something that is coming early enough before it creates an impact. Let’s say the virus was detected in the air in a conference room. You can see who has entered that conference room and immediately put those people in quarantine before they potentially transmit the virus to others.”

The DARPA grant is an accelerated, year-and-a-half program. Botte began working on the project this month and should have results by August 2022.

“This is a very exciting opportunity for us at Texas Tech to get something brand new that has never been done before,” she said. “I’m very excited by the potential implications of this research for our community, for stopping the pandemic, contributing somehow and for the opportunity the graduate students and the postdocs involved in this research are going to have to really work in research that ends in an immediate application, at an accelerated pace.”

More than anything, Botte is excited for the chance for her work at Texas Tech to be part of something much larger.

“If this project becomes like a carbon monoxide detector for the virus, can you imagine the opportunity to have a piece of Texas Tech’s heart everywhere protecting our nation?” Botte said. “That’s what makes me excited, and that’s how I see this project: protecting the world.”

###

Media Contact
Amanda Bowman
[email protected]

Original Source

https://today.ttu.edu/posts/2021/02/Stories/Botte-indoor-COVID-19-detector-dod-grant

Tags: DiagnosticsIndustrial Engineering/ChemistryInfectious/Emerging DiseasesResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Treg Therapy Boosts Pro-Inflammatory Th17 via IL-2

August 16, 2025
Intratracheal Budesonide Boosts Preterm Infant Lung Health

Intratracheal Budesonide Boosts Preterm Infant Lung Health

August 16, 2025

Gallbladder Removal Disrupts Gut Microbes, Fuels Tumors

August 16, 2025

Medical Staff Views on NAVA in Preterm Infants

August 16, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Loneliness Fuels Depression in Cancer Survivors

Treg Therapy Boosts Pro-Inflammatory Th17 via IL-2

Nab-Paclitaxel Combo Outperforms Gemcitabine in Biliary Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.