• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Follow the smell of the ocean to find where marine predators feed

Bioengineer by Bioengineer
February 24, 2021
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

The chemical DMSP is released when phytoplankton are consumed by zooplankton such as krill.

A joint research project between organizations in Japan and the US has demonstrated that zooplankton, a major food source for marine predators, can be located by following the concentration gradient of the chemical dimethyl sulfide (DMS) in ocean water and air. Currently, little is known about how marine predators search for and find enough food to maintain their body size. This study is expected to expand research into the chemical triggers of marine organisms while foraging.

Zooplankton, such as krill and copepods are the main energy source for many large marine animals. The big predators must consume a large amount of these tiny creatures to provide enough energy to power their enormous bodies. How they find their food is still not clearly understood.

Krill feed on phytoplankton which produce and retain water-soluble compounds in their bodies to cope with osmotic pressure. This is essential for survival in seawater. One of these compounds is dimethylsulfoniopropionate (DMSP). DMSP contains sulfur elements and is zwitterionic, meaning that it has both a positive and a negative charge like an amino acid. It is broken down by bacteria into DMS, a component of the familiar aromas associated with ocean air or dried seaweed. DMSP stored in phytoplankton is released into seawater when zooplankton graze on the phytoplankton, which is hypothesized to result in higher DMS concentrations in dense zooplankton areas. It is thought that marine predators could use DMS concentration to locate food sources. While attraction to artificially released DMS has been shown in some predatory species, whether natural gradients of DMS are used by predators and serve as a useful foraging cue remains unknown.

To investigate the phenomenon, an international team of researchers from Kumamoto University and Woods Hole Oceanographic Institution developed a new instrument to continuously and automatically analyze seawater and atmospheric concentrations of DMS. Together with a researcher from Stony Brook University, they then used the device to conduct a survey in June 2019 off the coast of Cape Cod, Massachusetts, a summer feeding grounds for many baleen whale species. Researchers took chemical measurements, recorded zooplankton and fish biomass, and whale locations over a series of transects across the ocean surface.

Their work revealed that, as hypothesized, zooplankton grazing on phytoplankton seems to result in higher localized concentrations of DMS compared to surrounding areas. In contrast, no association was found between fish biomass and DMS concentration. Simulations based on their measurements show that if large marine predators, such as whales, are able to detect the DMS concentration gradient, following increasing concentrations of DMS would allow them to reach denser zooplankton feeding areas than if they swam randomly.

“We plan to expand this research project in the future to investigate the relationship between DMS and predation by measuring the concentration of the chemical alongside marine predator movement trajectories,” said Professor Kei Toda, who led the chemical measurements. “We also plan to explore other attractant chemicals and study their relationship with the behavior of marine predators like whales, seabirds and penguins. A pilot study tagging humpback whales to examine their movements in relation to DMS was conducted in Antarctica in February 2020, but there are still some issues that need to be addressed to pursue the relationship between chemical substances and predation. We believe that we will have some interesting findings in the near future.”

###

This research was posted online in Communications Biology on 1 February 2021.

Source:

K. Owen, K. Saeki, J. D. Warren, A. Bocconcelli, D. N. Wiley, S.-I. Ohira, A. Bombosch, K. Toda, and D. P. Zitterbart, “Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass,” Communications Biology, vol. 4, no. 149, Feb. 2021.

Media Contact
J. Sanderson & N. Fukuda
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s42003-021-01668-3

Tags: BiochemistryBiologyBiotechnologyMarine/Freshwater BiologyOceanography
Share12Tweet8Share2ShareShareShare2

Related Posts

Engineered Bacterial Therapy Stimulates Immune Response in Preclinical Cancer Studies

Engineered Bacterial Therapy Stimulates Immune Response in Preclinical Cancer Studies

October 8, 2025
Unveiling the Plant Sulfotransferase Family’s Evolution

Unveiling the Plant Sulfotransferase Family’s Evolution

October 8, 2025

Sodium Butyrate Slows Colon Cancer Cell Growth

October 8, 2025

New Insights into Evolution Revealed Through Lizard Genetics

October 8, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1093 shares
    Share 437 Tweet 273
  • New Study Reveals the Science Behind Exercise and Weight Loss

    100 shares
    Share 40 Tweet 25
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    95 shares
    Share 38 Tweet 24
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    79 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

How Smoking and Biological Sex Influence Healthy Bladder Tissue Development: New Insights into Cancer Risk

Creating Advanced Polymers for Next-Generation Bioelectronics

Medicaid Innovation Models Enhance Maternal Care, Highlighting the Importance of Strategic Design

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.