• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, January 13, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

UTEP fights superbugs with $1.2 Million NIH grant to produce antibiotics

Bioengineer by Bioengineer
February 2, 2021
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: J.R. Hernandez / UTEP Communications

EL PASO, Texas – Chu-Young Kim, Ph.D., associate professor of chemistry and biochemistry at The University of Texas at El Paso, is helping combat the threat of superbugs – illnesses caused by drug-resistant bacteria – by returning to nature.

His work is supported by a $1.2 million grant from the National Institutes of Health (NIH) to develop a biological method for producing new versions of current antibiotics that have become ineffective due to resistance.

Superbugs are a major problem threatening the lives and health of people worldwide. A 2019 report by the Centers for Disease Control and Prevention states that more than 2.8 million antibiotic-resistant infections occur in the United States each year, and more than 35,000 people die as a result.

Kim said that the development of new antibiotics is essential since many are rapidly becoming less useful due to resistance. Rather than attempt to create entirely new compounds, Kim and his research team are taking drugs that already exist and modifying their chemical structure so that they retain the antibacterial activity but overcome resistance.

“Antibiotic drug resistance represents a real health threat,” said Robert Kirken, Ph.D., dean of the College of Science. “Over the past several decades we have seen little drug development in this area until recently. The work by Dr. Kim will help us stay one step ahead of these infections that kill tens of thousands of Americans each year.”

Traditionally, scientists modify drug molecules using chemical methods. Penicillin is one example of a drug that has seen enhanced versions developed throughout the years. However, Kim said that most antibiotics have structures that are more complex than penicillin. Thus, using chemicals to prepare new versions of these drugs would take years and the yield would be very low, making it impractical from a commercial standpoint and unaffordable for patients.

“What we are doing is, instead of chemically modifying the drug molecules as it is traditionally done, we’re going back to the original microorganisms that synthesize these antibiotics in the first place,” Kim said. For example, penicillin is produced by a fungus and echinomycin is derived from a soil bacterium. The research team will study how nature generates these complex molecules.

“Our ultimate goal is to use that knowledge to engineer microorganisms by mutating their DNA so that they produce a modified antibiotic that is effective against superbugs,” Kim said. “By doing it this way, we can produce very large quantities of the drug via fermentation and provide it to patients at an affordable price.”

Kim and his research team of undergraduate and graduate students will focus their efforts on studying how bacteria produce a natural product antibiotic called lasalocid. This drug requires nine enzymes – proteins that perform chemical transformations – to work together for bacteria to synthesize the antibiotic.

###

Media Contact
Victor Ricardo Martinez
[email protected]

Tags: BiochemistryChemistry/Physics/Materials SciencesEcology/Environment
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Thermal [2+2] Cycloaddition Builds Gem-Difluoro Bicycloalkanes

January 13, 2026
blank

Cobalt-Catalyzed Thioester Coupling via Siloxycarbene

January 12, 2026

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    72 shares
    Share 29 Tweet 18
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Carvacrol and Chloroquine Synergistically Halt Melanoma Metastasis

Venetoclax plus ML385 defeats AML chemotherapy resistance

Hesperidin Nanoparticles Boost Kidney and Cancer Defense

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.