• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Can you bounce water balloons off a bed of nails? Yes, says new study

Bioengineer by Bioengineer
December 14, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A group of first year students at Roskilde University, supervised by Dr Tina Hecksher, have shown that water-filled balloons behave very similarly to tiny water droplets, by bouncing them on a bed of nails.

Their work, published today in the European Journal of Physics in collaboration with Professor Julia Yeomans at Oxford University, was inspired by one of Professor Yeomans' previous papers studying water droplets bouncing on hydrophobic surfaces patterned with lattices of submillimetre-scale posts.

Dr Hecksher said: "We wanted to know if the so-called 'pancake bounce' effect – where the droplet lifts off the surface at its maximal extension – which was observed in the microscopic experiments could be replicated on a macroscopic scale.

"Scaling up the experiment allowed us to measure the impact forces in the pancake bounce, which gave a deeper insight into its dynamics. It also provides a really useful teaching tool to demonstrate to students in a very cost-effective, straightforward, and eye-catching way how these forces work."

The study compared the impact of the balloons – taking the place of water droplets – landing on a flat surface and on a bed of nails – modelling the submillimetre posts. Using large store-bought party balloons, a digital reflex camera running at 300 frames per second to record the impact in slow motion, and a piezoelectric sensor under the board to log the impact force, the team measured impacts at different velocities and the balloons' resulting behaviour.

They found the courses of the two impacts were initially similar. However, on the bed of nails, the balloon actually made a pancake bounce: it lifted off the bed of nails at its maximum deformation and began to retract in the air rather than on the surface. This is because some of the material penetrates into the nail pattern, recoils and – if the impact velocity is high enough – lifts the balloon off the bed of nails before it has time to retract.

Dr Hecksher said: "The behaviour of the balloons is surprisingly similar to that of millimetric bouncing drops. In particular, the pancake bouncing effect was reproduced showing the same reduction in contact time as in the microscopic experiment, but with absolute timescales longer by a factor more than 10. And the transition from normal bouncing to pancake bouncing happens at comparable impact parameters.

"In the future, it would be interesting to look at the similarity between water droplets and water filled balloons in more detail, by considering a greater range of balloon dimensions or higher Weber numbers, when drops break up upon bouncing but balloons cannot."

###

Media Contact

Simon Davies
[email protected]
44-011-793-01110
@IOPPublishing

Homepage

############

Story Source: Materials provided by Scienmag

Share12Tweet8Share2ShareShareShare2

Related Posts

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

February 7, 2026

Digital Health Perspectives from Baltic Sea Experts

February 7, 2026

Florida Cane Toad: Complex Spread and Selective Evolution

February 7, 2026

Exploring Decision-Making in Dementia Caregivers’ Mobility

February 7, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.