• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, August 12, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Can you bounce water balloons off a bed of nails? Yes, says new study

Bioengineer by Bioengineer
December 14, 2016
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A group of first year students at Roskilde University, supervised by Dr Tina Hecksher, have shown that water-filled balloons behave very similarly to tiny water droplets, by bouncing them on a bed of nails.

Their work, published today in the European Journal of Physics in collaboration with Professor Julia Yeomans at Oxford University, was inspired by one of Professor Yeomans' previous papers studying water droplets bouncing on hydrophobic surfaces patterned with lattices of submillimetre-scale posts.

Dr Hecksher said: "We wanted to know if the so-called 'pancake bounce' effect – where the droplet lifts off the surface at its maximal extension – which was observed in the microscopic experiments could be replicated on a macroscopic scale.

"Scaling up the experiment allowed us to measure the impact forces in the pancake bounce, which gave a deeper insight into its dynamics. It also provides a really useful teaching tool to demonstrate to students in a very cost-effective, straightforward, and eye-catching way how these forces work."

The study compared the impact of the balloons – taking the place of water droplets – landing on a flat surface and on a bed of nails – modelling the submillimetre posts. Using large store-bought party balloons, a digital reflex camera running at 300 frames per second to record the impact in slow motion, and a piezoelectric sensor under the board to log the impact force, the team measured impacts at different velocities and the balloons' resulting behaviour.

They found the courses of the two impacts were initially similar. However, on the bed of nails, the balloon actually made a pancake bounce: it lifted off the bed of nails at its maximum deformation and began to retract in the air rather than on the surface. This is because some of the material penetrates into the nail pattern, recoils and – if the impact velocity is high enough – lifts the balloon off the bed of nails before it has time to retract.

Dr Hecksher said: "The behaviour of the balloons is surprisingly similar to that of millimetric bouncing drops. In particular, the pancake bouncing effect was reproduced showing the same reduction in contact time as in the microscopic experiment, but with absolute timescales longer by a factor more than 10. And the transition from normal bouncing to pancake bouncing happens at comparable impact parameters.

"In the future, it would be interesting to look at the similarity between water droplets and water filled balloons in more detail, by considering a greater range of balloon dimensions or higher Weber numbers, when drops break up upon bouncing but balloons cannot."

###

Media Contact

Simon Davies
[email protected]
44-011-793-01110
@IOPPublishing

Home

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

Smart Contact Lenses for Cancer Diagnostics and Screening

Smart contact lenses for cancer diagnostics and screening

August 11, 2022
Tohoro, Right Whale, New Zealand

Social media helps scientists monitor rarely sighted whales

August 11, 2022

Reframe the pain: Reducing needle anxiety in children

August 11, 2022

Testosterone promotes ‘cuddling,’ not just aggression, animal study finds

August 11, 2022
Please login to join discussion

POPULAR NEWS

  • Picture of the horse specimen.

    Ancient DNA clarifies the early history of American colonial horses

    56 shares
    Share 22 Tweet 14
  • The pair of Orcas deterring Great White Sharks – by ripping open their torsos for livers

    66 shares
    Share 26 Tweet 17
  • Fatigue, headache among top lingering symptoms months after COVID

    40 shares
    Share 16 Tweet 10
  • Ill-fated ‘Into the Wild’ adventurer was victim of unfortunate timing, Oregon State study suggests

    39 shares
    Share 16 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

VirologyUrogenital SystemWeaponryVehiclesUrbanizationVirusUniversity of WashingtonViolence/CriminalsWeather/StormsVaccineVaccinesZoology/Veterinary Science

Recent Posts

  • Smart contact lenses for cancer diagnostics and screening
  • Social media helps scientists monitor rarely sighted whales
  • Reframe the pain: Reducing needle anxiety in children
  • Testosterone promotes ‘cuddling,’ not just aggression, animal study finds
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In