• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Fast decisions of flying insects

Bioengineer by Bioengineer
January 14, 2021
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Ten times more skilled at ‘life or death’ reactions

IMAGE

Credit: Flinders Foundation, Jonathan Barge photographer

Scientists are homing in on the amazing flying skills of insects. How flying insects are able to respond rapidly and appropriately in a fast-changing surroundings is a serious ambition of new Australian Research Council study.

Led by Flinders University Professor Karin Nordström, and Macquarie University Professor Andrew Barron who will ‘train’ European honeybees, the new ARC project will help unravel how the insects’ movements through the world helps them make rapid decisions.

‘Life or death decisions: making fast, accurate choices in a complex world’ is a $533,000 Discovery Project (DP210100740) that will combine brain recordings with flight analyses and computational modelling to generate new knowledge on how animals may utilise movements to simplify information sampling.

“If you’ve ever tried to swat a fly, you’ll know their response to movement is extremely rapid – about 10 times faster than us,” says ARC Future Fellow Professor Nordström, who leads the hoverfly motion vision research group at Flinders.

“Some insects are so small, but high-performing, we can learn a lot by understanding the neural and behavioural mechanisms that allow them to be very efficient foragers and experts at attacking and evading other insects.”

Findings from this ARC research will inform aspects of autonomous robotics and systems, computational neuroscience, aviation, defence, technologies required for challenging situations such as disaster relief, mining and remote exploration, and even pollination and agricultural applications.

The Flinders University lab has already been surprised by hoverfly responses to target motion, which opens even more questions about how these animals are able to perform optimally, despite carrying small brains and low-resolution compound eyes.

“We know that hoverflies are highly sensitive to movement, so understand how they visualise the world by the way they fly and position their bodies to capitalise on their decision-making will help us understand why they are so efficient at what they do,” says Professor Nordström.

While the Flinders hoverfly lab will investigate the insects’ responses to stimuli on a screen in a confined space, the Macquarie University team led by chief investigator Professor Barron will compare free-flying honeybee flight patterns with a separate group of bees trained to fly to a specific target.

“The ability to train bees, then determining how they fly to a pre-determined target, will allow us to understand whether they adjust their flight path when, for example, a flower is harder to see,” says Professor Baron, ARC Future Fellow at the Macquarie University’s Department of Biological Sciences.

###

References:

Nicholas, S and Nordström, K (2020) Persistent firing and adaptation in optic-flow-sensitive descending neurons Curr Biol 30(14): P2739-2742.E2

Nicholas, S, Leibbrandt, R and Nordström, K (2020) Visual motion sensitivity in descending neurons in the hoverfly J Comp Physiol A 206(2):149-163

Media Contact
Professor Karin Nordström
[email protected]

Tags: BiologyBiomechanics/BiophysicsMechanical EngineeringTechnology/Engineering/Computer ScienceVehicles
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

October 3, 2025
Transforming Palm Waste into High-Performance CO₂ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

Transforming Palm Waste into High-Performance CO₂ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

October 3, 2025

AI Advances Enhance Sustainable Recycling of Livestock Waste

October 3, 2025

Optimal Blastocyst Count for PGT-A in RPL Patients

October 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    93 shares
    Share 37 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    88 shares
    Share 35 Tweet 22
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    66 shares
    Share 26 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Illuminating the Future: Transforming Streetlamps into Electric Vehicle Chargers

Transforming Palm Waste into High-Performance CO₂ Absorbers: Malaysian Scientists Innovate with Agricultural Byproducts

AI Advances Enhance Sustainable Recycling of Livestock Waste

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.