• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Light-based processors boost machine-learning processing

Bioengineer by Bioengineer
January 6, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Oxford

The exponential growth of data traffic in our digital age poses some real challenges on processing power. And with the advent of machine learning and AI in, for example, self-driving vehicles and speech recognition, the upward trend is set to continue. All this places a heavy burden on the ability of current computer processors to keep up with demand.

Now, an international team of scientists has turned to light to tackle the problem. The researchers developed a new approach and architecture that combines processing and data storage onto a single chip by using light-based, or “photonic” processors, which are shown to surpass conventional electronic chips by processing information much more rapidly and in parallel.

The scientists developed a hardware accelerator for so-called matrix-vector multiplications, which are the backbone of neural networks (algorithms that simulate the human brain), which themselves are used for machine-learning algorithms. Since different light wavelengths (colors) don’t interfere with each other, the researchers could use multiple wavelengths of light for parallel calculations. But to do this, they used another innovative technology, developed at EPFL, a chip-based “frequency comb”, as a light source.

“Our study is the first to apply frequency combs in the field of artificially neural networks,” says Professor Tobias Kippenberg at EPFL, one the study’s leads. Professor Kippenberg’s research has pioneered the development of frequency combs. “The frequency comb provides a variety of optical wavelengths that are processed independently of one another in the same photonic chip.”

“Light-based processors for speeding up tasks in the field of machine learning enable complex mathematical tasks to be processed at high speeds and throughputs,” says senior co-author Wolfram Pernice at Münster University, one of the professors who led the research. “This is much faster than conventional chips which rely on electronic data transfer, such as graphic cards or specialized hardware like TPU’s (Tensor Processing Unit).”

After designing and fabricating the photonic chips, the researchers tested them on a neural network that recognizes of hand-written numbers. Inspired by biology, these networks are a concept in the field of machine learning and are used primarily in the processing of image or audio data. “The convolution operation between input data and one or more filters – which can identify edges in an image, for example, are well suited to our matrix architecture,” says Johannes Feldmann, now based at the University of Oxford Department of Materials. Nathan Youngblood (Oxford University) adds: “Exploiting wavelength multiplexing permits higher data rates and computing densities, i.e. operations per area of processer, not previously attained.”

“This work is a real showcase of European collaborative research,” says David Wright at the University of Exeter, who leads the EU project FunComp, which funded the work. “Whilst every research group involved is world-leading in their own way, it was bringing all these parts together that made this work truly possible.”

The study is published in Nature this week, and has far-reaching applications: higher simultaneous (and energy-saving) processing of data in artificial intelligence, larger neural networks for more accurate forecasts and more precise data analysis, large amounts of clinical data for diagnoses, enhancing rapid evaluation of sensor data in self-driving vehicles, and expanding cloud computing infrastructures with more storage space, computing power, and applications software.

###

Reference

J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A.S. Raja, J. Liu, C.D. Wright, A. Sebastian, T.J. Kippenberg, W.H.P. Pernice, H. Bhaskaran. Parallel convolution processing using an integrated photonic tensor core. Nature 07 January 2021. DOI: 10.1038/s41586-020-03070-1

Media Contact
Nik Papageorgiou
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-03070-1

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsHardwareOpticsTheory/Design
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025
Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    45 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Serum Markers Predict Atrial Fibrillation in Diabetes

Intrapleural Anti-VEGF Boosts Nab-Paclitaxel Efficacy

Amyloid Fibrils Connect CHCHD10, CHCHD2 to Neurodegeneration

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.