• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

2D CaCl crystals with +1 calcium ions displaying unexpected metallicity and ferromagnetism

Bioengineer by Bioengineer
January 6, 2021
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: @Science China Press

Calcium ions are presented in rocks, bones, shells, biominerals, geological deposits, ocean sediments, and many other important materials. Calcium ions also play major roles in the retention of carbon dioxide in natural waters, water hardness, signal transduction and tissue generation. As one of the alkaline earth metals, the calcium atom has two valence electrons according to the octet rule. Up to now, the only known valence state of calcium ions under ambient conditions is +2, and the corresponding crystals with calcium ions are insulating.

By using cryo-electron microscopy, scientists reported the direct observation of two-dimensional (2D) CaCl crystals on reduced graphene oxide (rGO) membranes under ambient conditions, which exhibit only monovalent (i.e. +1) calcium ions. Remarkably, metallic rather than insulating properties are displayed by those 2D CaCl crystals, and more interestingly, room-temperature ferromagnetism, resulted graphene-CaCl heterojunction, coexistence of piezoelectricity and metallicity, together with the distinct hydrogen storage and release capability under ambient conditions are experimentally demonstrated.

It should be noted that conventionally, metallic materials generally do not show a piezoelectricity. Such unexpected piezoelectricity-like behavior of the metallic CaCl crystals is induced by the abnormal 2D CaCl structure that the structure is metallic due to the monovalent behavior of the Ca ions on the one hand, and on the other hand the structure has two elements (Ca and Cl) with different electric effects under compressive or tensile strain. Therefore, the 2D CaCl crystals are a novel material that has both metallic character and piezoelectric property, and will have great novel applications as transistors down to the atomic scale and nanotransistor devices.

So far as we know, room-temperature ferromagnetism has never been observed for a main group metal element. Theoretical study reveals that the possible origin of such room-temperature ferromagnetism is the edge or defect effects of the CaCl crystals, where there is an unpaired valence electron in Ca+, then it is expected that every metal element has room-temperature ferromagnetism via forming the correspondingly abnormal 2D crystals.

Theoretical studies show that the formation of such abnormal crystal is attributed to the strong cation-π interactions of the Ca cations with the aromatic rings in the graphene surfaces. Since strong cation-π interactions also exist between other metal cations (such as Mg2+, Fe2+, Co2+, Cu2+, Cd2+, Cr2+ and Pb2+) and graphitic surfaces, similar crystals with abnormal valence of other metal cations are expected.

These findings not only present a breakthrough on the 2D crystals with abnormal cation-anion ratio, novel valence of cations, and unexpected conductivity, but also provide seminal works in material, biological, chemical and physical applications. The properties and behaviors of 2D crystals break the general knowledge about this widely distributed element in daily life, and they will definitely attract attention and prompt thought about its exciting applications in various fields.

These properties and behaviors of the 2D crystals will also highly expand the applications for the functionalized graphene. Further, considering the wide distribution of metallic cations and carbon on earth, such nanoscale “special” compounds with previously unrecognized properties may be ubiquitous in nature.

###

This research received funding from the National Natural Science Foundation of China, the Chinese Academy of Sciences, and the Ministry of Education of China.

See the article:

Lei Zhang, Guosheng Shi, Bingquan Peng, Pengfei Gao, Liang Chen, Ni Zhong, Liuhua Mu, Lijuan Zhang, Peng Zhang, Lu Gou, Yimin Zhao, Shanshan Liang, Jie Jiang, Zejun Zhang, Hongtao Ren, Xiaoling Lei, Ruobing Yi, Yinwei Qiu, Yufeng Zhang, Xing Liu, Minghong Wu, Long Yan, Chungang Duan, Shengli Zhang, and Haiping Fang

Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property, and monovalent calcium ions

Natl Sci Rev, 2020, doi: 10.1093/nsr/nwaa274

https://doi.org/10.1093/nsr/nwaa274

Media Contact
Haiping Fang
[email protected]

Original Source

http://doi.org/10.1093/nsr/nwaa274

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa274

Tags: Chemistry/Physics/Materials Sciences
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Exploring Decision-Making in Dementia Caregivers’ Mobility

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.