• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Making therapeutic sense of antisense oligonucleotides

Bioengineer by Bioengineer
January 5, 2021
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Department of Neurology and Neurological Science,TMDU

Researchers from Tokyo Medical and Dental University (TMDU) and Ionis Pharmaceuticals, USA, report a modification wherein replacing the RNA strand of a heteroduplex oligonucleotide with DNA may enhance the efficacy of antisense oligonucleotide-based drugs

Tokyo, Japan – Antisense oligonucleotides (ASO) hold great promise for pharmacotherapy. Now, researchers at Tokyo Medical and Dental University (TMDU) and Ionis Pharmaceuticals, advancing their earlier work on a heteroduplex oligonucleotide (HDO) model, have demonstrated augmentation of ASO-based drugs by replacing the RNA strand with DNA.

Many drugs work by modifying specific disease-related proteins. Unfortunately, they may also affect non-targeted proteins causing side-effects that downgrade their safety and clinical applicability. Nucleic-acid therapeutics employs an emerging class of drugs including ASOs that target disease at the genetic level by suppressing the expression of pathogenic proteins. By modifying targets hitherto undruggable by conventional pharmacotherapy, they offer potential for treating intractable diseases such as spinal muscular atrophy and Huntington disease, with several candidates in clinical use and more on the horizon.

ASOs are synthetic single-stranded molecules comprising a few dozen base pairs capable of regulating gene expression through binding to the “sense” strand of mRNA targets. Arranging nucleotides, the building blocks of genetic code, in an “antisense” or opposing order can suppress a specific RNA sequence and prevent production of harmful proteins.

The research team had earlier developed an HDO wherein the single-stranded ASO was hybridized to complementary RNA and conjugated with tocopherol. Toc-HDO(coRNA) proved more stable in serum, efficiently deliverable to target cells and more potent than the parent ASO. First author Yutaro Asami explains the rationale of the current study: “Since cellular uptake was mostly in the intact form and the parent ASO was released intracellularly, we proposed replacing the phosphodiester (PO) RNA of the complementary strand with PO DNA that is more stable and easier to manufacture.”

The researchers bioengineered a DNA/DNA double-stranded oligonucelotide: Toc-HDO(coDNA). The relatively low DNAse in serum would promote stability and the molecule would be activated intracellularly by DNase degradation. The efficacy of this molecular modification was evaluated using murine hepatocyte uptake assay, quantitative real-time PCR assay for RNA levels and fluorescence-based determination of hepatic ASO concentrations. “We could establish the efficacy of Toc-HDO(coDNA) on mRNA expression levels in comparison with parent ASOs of varied compositions,” claims Asami. “Moreover, we also elucidated coDNA strand structure-activity relationships and degradation kinetics in mouse liver cells.”

Senior author Professor Takanori Yokota looks into the future. “HDO technology promises personalized targeted therapy for several neurodegenerative and other intractable diseases. Our innovative molecular structural modifications, by enhancing clinical potency and safety, help enlarge the therapeutic toolkit on this versatile platform.”

###

The article, “Efficient Gene Suppression by DNA/DNA Double-Stranded Oligonucleotide In Vivo” was published in Molecular Therapy at DOI: 10.1016/j.ymthe.2020.10.017

Media Contact
Takanori YOKOTA
[email protected]

Original Source

http://www.tmd.ac.jp/english/press-release/20201208-1/index.html

Related Journal Article

http://dx.doi.org/10.1016/j.ymthe.2020.10.017

Tags: BiotechnologyCell BiologyGeneticsMedicine/HealthMolecular BiologyPharmaceutical Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

MIT Study Reveals New Insights into Graphite’s Durability in Nuclear Reactors

August 15, 2025
Efficient Framework Models Ionic Materials’ Surface Chemistry

Efficient Framework Models Ionic Materials’ Surface Chemistry

August 15, 2025

Discovery of Intrinsic HOTI-Type Topological Hinge States in Photonic Metamaterials

August 15, 2025

Scientists Employ Innovative Technique in Quest to Unveil Elusive Dark Matter Particle

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exploring the Impact of Fucosylation in Digestive Diseases and Cancer

The humble platelet takes on an exciting new—and doubly valuable—role, science reveals

Revolutionary Titanate Nanotubes Enhance Lithium-Ion Battery Anodes

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.