• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Managing salt pollution to protect drinking water resources and freshwater ecosystems

Bioengineer by Bioengineer
December 21, 2020
in Biology
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Virginia Tech

Doctors often tell us, “cut back on your salt.” And just like too much dietary salt is bad for blood pressure, too much salt in our nation’s streams, lakes, and reservoirs threatens ecosystem health and the security of our nation’s drinking water and food supplies. 

“Salt levels are rising fast in freshwaters across the United States,” said Stanley Grant, professor of civil and environmental engineering in the Virginia Tech College of Engineering and the principal investigator of a recent multimillion dollar grant from the National Science Foundation aimed at addressing the issue. “It’s a slow-moving train wreck. If we don’t figure out how to reverse this trend soon, it could become one of our nation’s top environmental challenges going forward.” 

Typical culprits include excessive de-icer use on roads and parking lots during the winter, as well as the discharge of industrial and municipal wastewaters. But putting our nation on a salt diet will not be easy. 

“Reversing freshwater salinization will require changing the way we design and operate our engineered infrastructure, but also changing the everyday choices we all make, from which home products we use, such as detergents, to how much salt to sprinkle on our icy driveway,” said Sujay Kaushal, a co-principal investigator on the NSF grant at the University of Maryland and an international expert on freshwater salinization. “It’s going to require finding new ways to collaborate across disciplinary boundaries – and across the traditional academic/practitioner divide.”

The grant, which provides up to $3.6 million to the researchers over five years, was awarded through the National Science Foundation’s Growing Convergence Research (GCR) program, which aims to catalyze solutions to societal grand challenges by the merging of ideas, approaches, and technologies from widely diverse fields of knowledge to stimulate innovation and discovery.

“Growing Convergence Research is one of NSF’s Big Ten Ideas,” said Megan Rippy, an assistant professor of civil and environmental engineering at Virginia Tech and a co-principal investigator on the project. “Our grant is in the second cohort of research projects funded under NSF’s GCR program, which makes this project all the more exciting.”

Freshwater salinization is just one of many upcoming environmental threats that won’t be easily solved with traditional (top-down regulatory) approaches.

“Emerging environmental challenges, like freshwater salinization, are tough to address because there isn’t much appetite in this country right now for big regulatory fixes, and there is no single ‘bad guy’ to go after. We all contribute to the problem in some small way,” said Thomas Birkland, another co-principal investigator on the project and a professor of public policy at NC State. “It’s a classic ‘tragedy of the commons’ problem. Through our collective actions we unwittingly deplete the very resource that we all rely on for survival.” 

The researchers are borrowing a page from Nobel prize-winning political scientist Elinor Ostrom, who demonstrated, through case studies across the United States and around the world that, under the right circumstances, common pool resources, like drinking water and freshwater ecosystems, can be effectively self-managed by local stakeholders. The team hypothesizes that this “bottom-up” approach to resource management can be catalyzed through convergent research.

“In our case, convergence refers to a process of engaging researchers, government agencies, and other stakeholders in rich deliberations to collectively design and test locally-tailored solutions,” said Todd Schenk, an associate professor in the School of Public and International Affairs at Virginia Tech and a co-principal investigator on the project. “We plan to test this new approach by working with the local communities and institutions to improve salt management in the Occoquan Reservoir, an important drinking water source for Fairfax Water, a water utility serving about 2 million people in Northern Virginia.” 

The NSF award will also help catalyze collaborations between the Occoquan Watershed Monitoring Laboratory, which Grant co-directs, and other research programs at Virginia Tech, as well as at universities, research foundations, and government agencies across the United States and internationally. The laboratory was established in 1972 to serve as an unbiased source of scientific monitoring of the Occoquan Reservoir, the site of the nation’s first deliberate use of reclaimed wastewater to supplement a surface drinking water supply.

“While it’s often hidden from the public eye, freshwater salinization is a serious problem for coastal zones around the world,” said Robert Weiss, director of the Center for Coastal Studies at Virginia Tech, housed within the Fralin Life Sciences Institute, and professor of natural hazards in the Department of Geosciences in the College of Science.

“This team’s transdisciplinary research will benefit communities and society in general and underscores Virginia Tech’s commitment to the principles of the land-grant university in the 21st century.” Experience gained and lessons learned from the project will be upscaled nationally and globally in partnership with The Water Research Foundation.

“From my viewpoint, this project is tailor-made for today’s environmental science and engineering student,” said Grant. “They’re not just interested in solving narrow, technical problems. They really want to see that connection to policy and connection to change. They want to tap into a passion about the future of the planet and become a force for good.” 

Additional faculty on the project include Marc Edwards, University Distinguished Professor in the Department of Civil and Environmental Engineering at Virginia Tech; Jesus Gomez-Velez, an assistant professor at Vanderbilt University; Erin Hotchkiss, an assistant professor in the Department of Biological Sciences at Virginia Tech; and Peter Vikesland, a professor in the Department of Civil and Environmental Engineering at Virginia Tech.

###

Media Contact
Kristin Rose Jutras 
[email protected]

Original Source

https://vtnews.vt.edu/articles/2020/12/fralinlifesci-growing-convergence-research-grant-salt-pollution.html

Tags: BiologyClimate ChangeEarth ScienceHydrology/Water ResourcesMarine/Freshwater Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

NR2E1 Gene Methylation Influences Beef Cattle Adipocytes

October 5, 2025
“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

“Rice Cultivar Transcriptome Reveals Heat Stress Response Genes”

October 4, 2025

Revolutionary Graph Network Enhances Protein Interaction Prediction

October 4, 2025

DOG Gene Family in Wheat Drives Seed Dormancy

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nurses’ Insights on Implementing Patient-Reported Outcomes

Exploring NK Cell Therapies for Solid Tumors

Acupuncture Use for Low Back Pain in China

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.