• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

TTUHSC’s Sutton receives grant to continue work on potential lupus treatment

Bioengineer by Bioengineer
December 3, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: TTUHSC

The Lupus Research Alliance (LRA) recently named R. Bryan Sutton, Ph.D., a professor in the Department of Cell Physiology and Molecular Biophysics at the Texas Tech University Health Sciences Center (TTUHSC), as a recipient of a 2020 Lupus Mechanisms and Targets Award (LMTA). The grant could provide Sutton up to $200,000 a year for up to three years to continue his research into possible mechanisms that could cause or contribute to lupus in hopes of developing novel biological targets and strategies for designing new medicines to treat the disease.

“The focus of the LRA grant mechanism that we were awarded is therapeutics,” Sutton said. “Most basic research scientists dream that, one day, their research will be used to help sick people. The research funded by the LRA makes this dream much closer for us than it would normally be.”

Though most often diagnosed in young women aged 15 to 44 years, lupus is a chronic and complex autoimmune disease that causes the body’s immune system to erroneously attack healthy cells and potentially harm many parts of the body. While the cause of lupus remains a mystery, the disease can cause widespread inflammation and tissue damage that can impact the patient’s joints, skin, brain, lungs, kidneys and blood vessels. Effective treatments for lupus are available, but there is no known cure.

Sutton said there are rare cases of childhood lupus that are caused by the poor function of DNase1L3, an enzyme that typically removes DNA that is leftover from cells after they die. Lupus patients often have lower amounts of Dnase1L3, and when this enzyme does not function correctly, autoantibodies can be produced in response to the excess DNA. The antibodies for DNA can then lead to inflammation and tissue damage.

Although injecting this enzyme might help, Sutton said it wouldn’t last long enough in the patient to be an effective medicine. With help from the LRA grant, Sutton, his graduate student Jon McCord and Peter Keyel, Ph.D., from the Texas Tech University Department of Biology will design a new version of Dnase1L3 to overcome this limitation. Their hope is that this modified version of Dnase1L3 can then be used as a potential treatment for lupus.

Sutton’s lab has expertise is in protein structure, especially producing and crystallizing protein molecules, then using X-ray with the crystals to determine the protein’s 3D structure. Because of this expertise, Keyel invited the Sutton lab several years ago to collaborate with his lab to crystalize Dnase1L3. McCord took on the project for the Sutton lab and managed to express, purify and crystallize the Dnase1L3 from material that was made in bacteria.

“We didn’t think anything of it, since that’s what we do every day, but apparently we’re the only lab in the world who has accomplished this feat,” Sutton said. “Dnase1L3 is a difficult enzyme to work with since it has traditionally been hard to purify from human serum, but we can now make milligrams of Dnase1L3 in bacteria.”

Sutton said being able to work on large quantities of Dnase1L3 alone would be a boon to the lupus community, especially since McCord went on to crystallize the enzyme and solve the enzyme’s 3D structure.

“Now that we can physically look at the Dnase1L3 enzyme up close and personal, we can answer questions about how the enzyme functions, and we can directly address what the mutations that cause lupus erythematosus do to the enzyme” Sutton added.

###

The Lupus Research Alliance is the largest non-governmental, non-profit funder of lupus research worldwide. The alliance works to unite the global lupus community in bold determination to free the world of the disease through the power of science.

Media Contact
Suzanna Cisneros
[email protected]

Tags: Biomechanics/BiophysicsCell BiologyMedicine/HealthPainPharmaceutical ChemistryPharmaceutical SciencesPhysiologyResearchers/Scientists/Awards
Share12Tweet8Share2ShareShareShare2

Related Posts

Isolable Germa-Isonitrile with N≡Ge Triple Bond

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025
Fluorescent RNA Switches Detect Point Mutations Rapidly

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025

Designing DNA for Controlled Charge Transport

November 18, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    93 shares
    Share 37 Tweet 23
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    98 shares
    Share 39 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Metformin’s Impact on Insulin Resistance in Type 1 Diabetes

Trophoblast and Folate Receptors in Uterine Carcinosarcoma

Cr³⁺ Boltzmann Thermometry Achieves Record Dynamic Range

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.