• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, October 24, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers validate theory that neutrinos shape the universe

Bioengineer by Bioengineer
December 2, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Kavli IPMU

The effect that nearly massless, subatomic particles called neutrinos have on the formation of galaxies has long been a cosmological mystery–one that physicists have sought to measure since discovering the particles in 1956.

But an international research team including the Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU) Principal Investigator Naoki Yoshida, who is also a professor in the department of physics at the University of Tokyo, has created cosmological simulations that accurately depict the role of neutrinos in the evolution of the universe. Their study was recently published in The Astrophysical Journal.

Missouri University of Science and Technology (Missouri S&T) cosmologist Dr. Shun Saito, an assistant professor of physics and a researcher on the team, says the work is a milestone in the process of simulating the formation of the structure of the universe. Saito is also a visiting associate scientist at the Kavli IPMU.

The team used a system of differential equations known as the Vlasov-Poisson equations to explain how neutrinos move through the universe with different values assigned to their mass.

The technique accurately represented the velocity distribution function of the neutrinos and followed its evolution over time. The researchers then examined the effects of neutrinos on galaxy formation and evolution.

Their results showed that neutrinos suppress the clustering of dark matter–the undefined mass in the universe–and, in turn, galaxies. They found that neutrino-rich regions are strongly correlated with massive galaxy clusters, and that the effective temperature of the neutrinos varies substantially depending on the mass of the neutrino.

The researchers say that the most stringent experiments used to estimate neutrino mass are cosmological observations, but those can only be relied upon if simulation predictions are accurate.

“Overall, our findings are consistent with both theoretical predictions and the results of previous simulations,” says Dr. Kohji Yoshikawa from the Center for Computational Sciences at the University of Tsukuba and lead author of the study. “It is reassuring that the results from entirely different simulation approaches agree with each other.”

“Our simulations are important because they set constraints on the unknown quantity of the neutrino mass,” says Saito from Missouri S&T. “Neutrinos are the lightest particles we know of. We only recently learned neutrinos have mass from the discovery featured in the 2015 Nobel Prize in physics.”

That prize awarded two scientists, including Kavli IPMU Principal Investigator Takaaki Kajita, who is also the Director at the Institute for Cosmic Ray Research, University of Tokyo, for their separate discoveries that one kind of neutrino can change into another, which showed that neutrinos have mass.

“Our work might ultimately lead to a robust determination of the neutrino mass,” Saito says.

###

Dr. Satoshi Tanaka, a postdoctoral fellow at the Yukawa Institute for Theoretical Physics at Kyoto University, was the fourth member of the study, titled “Cosmological Vlasov-Poisson Simulations of Structure Formation with Relic Neutrinos: Nonlinear Clustering and the Neutrino Mass.”

Authors: Kohji Yoshikawa (1), Satoshi Tanaka (2), Naoki Yoshida (3, 4, 5), Shun Saito (6, 4)

Author affiliation:

    1. Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

    2. Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa Oiwake-Cho, Sakyo-Ku, Kyoto 606-8502, Japan

    3. Department of Physics, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

    4. Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

    5. Research Center for the Early Universe, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan

    6. Institute for Multi-messenger Astrophysics and Cosmology, Department of Physics, Missouri University of Science and Technology, 1315 N Pine St, Rolla, MO 65409

Abstract of the paper: https://iopscience.iop.org/article/10.3847/1538-4357/abbd46
Preprint (arXiv.org)

Research contact:

Naoki Yoshida

Principal Investigator

Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo

Professor

Department of Physics, the University of Tokyo

E-mail: [email protected]

Media Contact
John Amari
[email protected]

Original Source

http://www.ipmu.jp/en/20201201-VlasovPoisson

Related Journal Article

http://dx.doi.org/10.3847/1538-4357/abbd46

Tags: AstronomyAstrophysicsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

From Wastewater to Fertile Ground: Chinese Researchers Achieve Dual Breakthroughs in Phosphorus Recycling

October 23, 2025
Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

Innovative ‘Molecular Dam’ Prevents Energy Loss in Nanocrystals

October 23, 2025

Physicists Explore Atomic Nuclei Using Innovative Molecule-Based Technique

October 23, 2025

Unlocking Smarter Devices and Safer Drugs: UH Crystals Expert Advances Crystal Formation Control

October 23, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1278 shares
    Share 510 Tweet 319
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    308 shares
    Share 123 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    181 shares
    Share 72 Tweet 45
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    132 shares
    Share 53 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Hip Fracture Care: Surgery and Mobility Insights

Health Workers’ Radiation Knowledge Influences Attitudes

Bat Flies’ Microbial Networks Vary by Host Specificity

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.