• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Holographic fluorescence imaging

Bioengineer by Bioengineer
November 30, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ICFO

Holography is best known for its ability to produce 3D images (holograms) by recording an interference pattern of light scattered by an object with some reference wave. This simple optical experiment records the amplitude as well as the normally invisible phase of the underlying electric field. Once known, this information can be used to simultaneously localize many individual particles in all 3 dimensions.

In biology though holography is less common, as the most suitable technique, combining sensitivity, resolution and specificity, is fluorescence imaging which is widely used in live cell imaging. It would be fantastic if one could combine fluorescence microscopy with holography and thus retrieve the full 3D distribution of fluorescently labeled entities inside a cell. Unfortunately, fluorescence is incoherent, with a very short path-length and phase memory, complicating the creation of a reference wave for any fluorescence interference and hence holography.

Now holographic fluorescence imaging is presented by ICFO researchers Matz Liebel and Jaime Ortega-Arroyo, working the groups of ICREA professors at ICFO Niek van Hulst and Romain Quidant. They implemented a scheme that eliminates the need for a reference wave. Instead, they used the intrinsic phase information of each individual photon to access its phase via a technique called lateral shearing-interferometry. In essence, rather than directly measuring the phase they measured the position-dependent phase change in wide-field using a CMOS camera. Next, they computationally integrated this information to recover the full electric field of fluorescent light with single-molecule sensitivity. The novel scheme expands the principle of digital holography to fast fluorescent detection by eliminating the need for phase cycling and enables 3D-tracking of individual nanoparticles with an in-plane resolution of 15 nm and a z-range of 8 micrometer.

Liebel and Ortega-Arroyo then teamed up with the group of Hakho Lee at the Massachusetts General Hospital in Boston, to image and track the 3D motion of extracellular vesicles (EVs) inside live cells. They resolved both near-isotropic 3D diffusion as well as directional transport. Interestingly, for extended observation windows, they observed a transition toward anisotropic motion with the EVs being transported over long distances in the axial plane, confined in the horizontal dimension.

The fluorescence holography is directly compatible with present-day super-resolution modalities and equally well suited for other volumetric imaging challenges, such as tracking in tissue or calcium imaging. The work was recently published in Science Advances.

###

Media Contact
Alina Hirschmann
[email protected]

Tags: Biomechanics/BiophysicsChemistry/Physics/Materials SciencesMaterialsMolecular PhysicsNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Carbonate Ions Drive Water Ordering in CO₂ Reduction

November 25, 2025
Isolable Germa-Isonitrile with N≡Ge Triple Bond

Isolable Germa-Isonitrile with N≡Ge Triple Bond

November 24, 2025

Fluorescent RNA Switches Detect Point Mutations Rapidly

November 21, 2025

Engineering Ultra-Stable Proteins via Hydrogen Bonding

November 19, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    203 shares
    Share 81 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    119 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    94 shares
    Share 38 Tweet 24
  • Scientists Create Fast, Scalable In Planta Directed Evolution Platform

    100 shares
    Share 40 Tweet 25

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Drying Methods on Synbiotic Encapsulation

Transforming Lung Cancer Biomarker into Colorectal Risk Tool

Strengthening Pediatric Academic Medicine Amid Challenges

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.