• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, November 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

A new strategy for the greener use of calcium carbide

Bioengineer by Bioengineer
November 25, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The researchers proposed a new approach by analysing the interaction of calcium acetylide with water and dimethyl sulfoxide on the atomic scale.

IMAGE

Credit: Mikhail Polynski, assistant teaching fellow at the Institute of Chemistry of St Petersburg University

Calcium acetylide was discovered more than 150 years ago. It is a yellowish-white, beige, or grey solid, a compound of calcium and carbon. Calcium acetylide is currently used to produce gaseous acetylene. In industry, it is widely used in the production of acetic acid and ethyl alcohol, as well as it can be used in the production of plastics, rubber, and rocket engines.

The carbon needed for the synthesis of calcium acetylide is mined in an unsustainable way. As a result, the fossil resource is depleted (the unsustainable approach) and, furthermore, the amount of carbon increases above the earth’s surface. ‘We are working on a strategy for the carbon-neutral cycle of production. In particular, to obtain calcium acetylide, you can use carbon that is obtained via thermal decomposition (pyrolysis) of waste, and the resulting substance can be used in industry to create new compounds,’ said Konstantin Rodygin, a research associate at the Laboratory of Cluster Catalysis, St Petersburg University.

‘Nowadays, a key challenge for humanity is to create a new generation of industrial processes that make it possible to obtain the most important organic compounds and materials within the carbon-neutral approach. Of utmost importance is the replacement of fossil resources with renewable ones, thus solving environmental problems. As shown in our works, organic synthesis based on calcium acetylide opens up fresh opportunities for implementing carbon-neutral technologies. Moreover, understanding the chemical processes of the transformation of carbide species in chemical processes in solution is of key importance,’ said Valentin Ananikov, a member of the Russian Academy of Sciences and the Head of the Laboratories of Cluster Catalysis and Metal-Complex and Nanoscale Catalysts at the Zelinsky Institute.

The chemists were able to propose a new strategy for using the substance by simulating the processes that occur at the level of atoms and molecules during the interaction of calcium acetylide, water, and a dimethyl sulfoxide solvent. Calcium acetylide is a salt containing negatively charged acidic residues of acetylene (the so-called acetylide anions with a charge of ‘?2’) and positively charged calcium ions. The researchers investigated the acidity of acetylide anions, water, and some other substances in a dimethyl sulfoxide solvent. In that solvent, an unusual phenomenon can be observed; the interaction of acetylide anions with water, hydrolysis, proceeds incompletely. The so-formed anions, having a charge of ‘-1’, can undergo a wide range of key organic chemical reactions.

‘After performing the analysis, we realized that instead of water, one can use other protonating substances to transfer acetylide into solution. Also, one can potentially use a less toxic and more ‘green’ solvent instead of dimethyl sulfoxide to perform reactions involving calcium acetylide, if the solvent meets some newly-discovered criteria. Thus, chemical synthesis of new substances with calcium acetylide can be ‘greener’ due to the potential of calcium acetylide to react in less toxic solvents, as well as due to more sustainable approaches to the synthesis of the carbide itself’ said Mikhail Polynski, a co-author of the article, assistant teaching fellow at the Institute of Chemistry of St Petersburg University.

Noteworthy, one of the co-authors of the new article is Mariia Sapova, a graduate of St Petersburg University, who started work on the project during her master’s studies. ‘The challenging project attracted me from the start, as the idea of combining various computational methods opens up ample opportunities for the simulation of complex processes, such as, in our case, the dissolution process. This work gave me a broadened understanding of science in general and, moreover, encouraged me to go out of my comfort zone, modelling crystals, and to challenge the limits of applicability of various methods in computational chemistry. I think that methodologically complex modeling approaches like the proposed in the article should be developed further, so we can perform truly realistic modelling of chemical processes,’ noted Mariia Sapova.

As Mikhail Polynski specified, the newly presented research is purely theoretical; it is a computer simulation of the process of obtaining acetylides from calcium acetylide. ‘We used the so-called quantum chemical methods, Born-Oppenheimer molecular dynamics. As a result of such a simulation, it is possible to make a short molecular movie showing how the motion of atoms and molecules looks like at very short, picosecond, time scales,’ concluded Mikhail Polynski.

###

The research is a part of a project on the relevant chemistry of calcium acetylide funded by St Petersburg University. It is being carried out by the University’s Laboratory of Cluster Catalysis with the participation of researchers from the Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences. A significant part of the simulation was carried out using the facilities of the Computing Centre of the St Petersburg University Research Park.

Video from Ananikov Lab

Description: Born-Oppenheimer molecular dynamics of an acetylide molecule HO-Ca-CCH solvated in DMSO.
Author: Mikhail Polynski, assistant teaching fellow at the Institute of Chemistry of St Petersburg University

Media Contact
Polina Ogorodnikova
[email protected]

Related Journal Article

http://dx.doi.org/10.1039/D0SC04752J

Tags: Chemistry/Physics/Materials SciencesIndustrial Engineering/Chemistry
Share13Tweet8Share2ShareShareShare2

Related Posts

Innovative Lightweight Multi-Wavelength Network Enables Efficient, High-Fidelity Full-Color 3D Holographic Displays

Innovative Lightweight Multi-Wavelength Network Enables Efficient, High-Fidelity Full-Color 3D Holographic Displays

November 3, 2025
Dark Matter Conforms to Gravity, New Findings Reveal

Dark Matter Conforms to Gravity, New Findings Reveal

November 3, 2025

Breakthrough in Alkaloid Chemistry: First Asymmetric Syntheses of Seven Quebracho Indole Alkaloids Achieved in Just 7-10 Steps Using “Antenna Ligands”

October 31, 2025

Dual-Function Electrocatalysis: A Comprehensive Overview

October 31, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1296 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    204 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    137 shares
    Share 55 Tweet 34

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Exposure Science 2024: Health Risks to Vulnerable Groups

Dr. Xin Jin Awarded 2026 Peter Gruss Young Investigator Prize

Gender Differences in Hamster Hypertension and Kidney Damage

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.