• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Understanding the utility of plasmas for medical applications

Bioengineer by Bioengineer
November 24, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers aim to better explain the way plasmas interact with biological materials to help pave the way for plasma use in wound healing and cancer therapy

IMAGE

Credit: Natalia Yu. Babaeva

WASHINGTON, November 24, 2020 — Plasma medicine is an emerging field, as plasmas show promise for use in a wide range of therapies from wound healing to cancer treatment. Plasma jets are the main plasma sources typically used in plasma-surface applications. Before applications can progress, however, a better understanding of how plasma jets modify the surfaces of biological tissue is required.

To help with this understanding, researchers from the Russian Academy of Sciences conducted computer simulations of the interaction between an atmospheric pressure plasma jet with a surface that has properties similar to blood serum. They present their analysis in the Journal of Applied Physics, from AIP Publishing.

“While using the plasma jets for the purpose of plasma medicine, it is important to know that the presence or absence of the treated surface in vicinity of a jet significantly influences jet parameters,” said Natalia Babaeva, one of the authors. “For example, the wounds with blood serum can have different properties. These properties can also vary during the plasma treatment.”

Depending on the characteristics of the tissue being treated, the plasma jet can behave in a number of different ways. The ionization waves produced by plasma jets may reflect back and forth, or they can spread over the tissue as surface discharge.

For the type of plasma Babaeva and her team studied, they found that the biomaterial-like surface can lead to multiple reflections of the plasma jet, and with each passage, the number of electrons and radicals — a type of very reactive molecule — increases. Specifically, the radicals identified are oxygen, hydroxide, hydrogen peroxide, ozone, and nitric oxide, also known as reactive oxygen species and reactive nitrogen species.

“Reactive oxygen species and reactive nitrogen species are important for the actions of antimicrobial drugs, cancer, and wound healing therapies,” Babaeva said, adding that they both play an active role in the immune systems of animals and plants.

Quantifying these radicals and understanding the direction and magnitude of their flow is important for optimizing plasmas for use in biomedical applications, where the ability to control their behavior to some degree is crucial. The team’s simulations provide the means to predict this behavior.

“This prediction is very important, as it determines the plasma treatment potential,” Babaeva said. “Our research adds some knowledge on the particular behavior of the jet in the presence of highly conductive surfaces.”

###

The article, “Reactive fluxes delivered by plasma jets to conductive dielectric surfaces during multiple reflections of ionization waves,” is authored by Natalia Yu. Babaeva and George V. Naidis. The article will appear in the Journal of Applied Physics on Nov. 24, 2020 (DOI: 10.1063/5.0019350). After that date, it can be accessed at https://aip.scitation.org/doi/10.1063/5.0019350.

ABOUT THE JOURNAL

The Journal of Applied Physics is an influential international journal publishing significant new experimental and theoretical results in all areas of applied physics. See https://aip.scitation.org/journal/jap.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0019350

Tags: BiologyBiomechanics/BiophysicsChemistry/Physics/Materials SciencesMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

LINC01547 Enhances Pancreatic Cancer and Chemoresistance

Psychological Resilience Mediates Care in Nursing Interns

MeaB bZIP Factor Essential for Nitrosative Stress Response

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.