• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, October 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

CCNY researchers overcome barriers for bio-inspired solar energy harvesting materials

Bioengineer by Bioengineer
November 23, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Top image adapted from Journal of Physical Chemical Letters. Bottom image, Kara Ng, Nature Chemistry 2020

Inspired by nature, researchers at The City College of New York (CCNY) can demonstrate a synthetic strategy to stabilize bio-inspired solar energy harvesting materials. Their findings, published in the latest issue of Nature Chemistry, could be a significant breakthrough in functionalizing molecular assemblies for future solar energy conversion technologies.

In almost every corner of the world, despite extreme heat or cold temperature conditions, you will find photosynthetic organisms striving to capture solar energy. Uncovering nature’s secrets on how to harvest light so efficiently and robustly could transform the landscape of sustainable solar energy technologies, especially in the wake of rising global temperatures.

In photosynthesis, the first step (that is, light-harvesting) involves the interaction between light and the light-harvesting antenna, which is composed of fragile materials known as supra-molecular assemblies. From leafy green plants to tiny bacteria, nature designed a two-component system: the supra-molecular assemblies are embedded within protein or lipid scaffolds. It is not yet clear what role this scaffold plays, but recent research suggests that nature may have evolved these sophisticated protein environments to stabilize their fragile supra-molecular assemblies.

“Although we can’t replicate the complexity of the protein scaffolds found in photosynthetic organisms, we were able to adapt the basic concept of a protective scaffold to stabilize our artificial light-harvesting antenna,” said Dr. Kara Ng. Her co-authors include Dorthe M. Eisele and Ilona Kretzschmar, both professors at CCNY, and Seogjoo Jang, professor at Queens College.

Thus far, translating nature’s design principles to large-scale photovoltaic applications has been unsuccessful.

“The failure may lie in the design paradigm of current solar cell architectures,” said Eisele. However, she and her research team, “do not aim to improve the solar cell designs that already exist. But we want to learn from nature’s masterpieces to inspire entirely new solar energy harvesting architectures,” she added.

Inspired by nature, the researchers demonstrate how small, cross-linking molecules can overcome barriers towards functionalization of supra-molecular assemblies. They found that silane molecules can self-assemble to form an interlocking, stabilizing scaffold around an artificial supra-molecular light-harvesting antenna.

“We have shown that these intrinsically unstable materials, can now survive in a device, even through multiple cycles of heating and cooling,” said Ng. Their work provides proof-of-concept that a cage-like scaffold design stabilizes supra-molecular assemblies against environmental stressors, such as extreme temperature fluctuations, without disrupting their favorable light-harvesting properties.

###

The research was supported by CCNY’s Martin and Michele Cohen Fund for Science, the Solar Photochemistry Program of the U.S. Department of Energy, Office of Basic Energy Sciences and the National Science Foundation (NSF CREST IDEALS and NSF-CAREER).

Media Contact
Jay Mwamba
[email protected]

Original Source

https://www.ccny.cuny.edu/news/ccny-researchers-overcome-barriers-functionalization-bio-inspired-solar-energy-harvesting

Tags: Atmospheric ChemistryAtomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesClimate ChangeEnergy SourcesEnergy/Fuel (non-petroleum)GeophysicsMolecular BiologyMolecular Physics
Share12Tweet8Share2ShareShareShare2

Related Posts

Neutrino ‘Flavors’ Could Unlock the Universe’s Greatest Mysteries

Neutrino ‘Flavors’ Could Unlock the Universe’s Greatest Mysteries

October 22, 2025
blank

Underwater Thermal Vents Could Be the Cradle of Life’s Earliest Molecular Precursors

October 22, 2025

New Bacterium Harnesses Spent Battery Waste, Paving the Way for Self-Sufficient Battery Recycling

October 22, 2025

Light Particles Thrive in Groups, Study Reveals

October 22, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1275 shares
    Share 509 Tweet 318
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    306 shares
    Share 122 Tweet 77
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    145 shares
    Share 58 Tweet 36
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    131 shares
    Share 52 Tweet 33

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Post-Pandemic Frailty in Ecuador’s Older Adults Explored

Circular Economy Revolutionizes Global Lithium Battery Supply

Link Between Vitamin D Deficiency and PCOS Uncovered

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 66 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.