• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Researchers develop ultra-fast polymer modulators that can take the heat

Bioengineer by Bioengineer
November 13, 2020
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Silicon-polymer hybrid modulators capable of optical data rates of 200 Gbit/s at temperatures up to 110 °C could help reduce datacenter cooling costs

IMAGE

Credit: Shiyoshi Yokoyama, Kyushu University

Datacenters could benefit from lower cooling costs in part to ultra-fast electro-optic modulators developed by researchers in Japan using a polymer that is stable even at temperatures that would boil water.

Reported in the journal Nature Communications, the silicon-polymer hybrid modulators can transmit 200 gigabits of data per second at up to 110 °C and could enable optical data interconnections that are both extremely fast and reliable at high temperatures, reducing the need for cooling and expanding applications in harsh environments like rooftops and cars.

Demand for high-speed data transmission such as for high-definition media streaming has exploded in recent years, and optical communications are central to many of the necessary data connections. A critical component is the modulator, which puts data on a beam of light passing through an electro-optic material that can change its optical properties in response to an electric field.

Most modulators currently use inorganic semiconductors or crystals as the electro-optic material, but organic-based polymers have the advantages that they can be fabricated with excellent electro-optic properties at a low cost and operated at low voltages.

“Polymers have great potential for use in modulators, but reliability issues still need to be overcome for many industry applications,” explains Shiyoshi Yokoyama, professor of Kyushu University’s Institute for Materials Chemistry and Engineering and leader of the research collaboration.

One challenge is that parts of the molecules in the polymer layer must be organized through a process called poling to obtain good electro-optic properties, but this organization can be lost when the layer gets warm enough to begin softening–a point referred to as the glass transition temperature.

However, if the modulators and other components can operate rapidly and reliably even at high temperatures, datacenters could run warmer, thereby reducing their energy usage–nearly 40% of which is currently estimated to go toward cooling.

Employing a polymer they designed to exhibit superb electro-optic properties and a high glass transition temperature of 172 °C through the incorporation of appropriate chemical groups, the research team achieved ultra-fast signaling at elevated temperatures in a silicon-polymer hybrid modulator based on a Mach-Zehnder interferometer configuration, which is less sensitive to temperature changes than some other architectures.

In the modulators, composed of multiple layers including the polymer and silicon, an incoming laser beam is split into two arms of equal length. Applying an electric field across the electro-optic polymer in one of the arms changes the optical properties such that the light wave slightly shifts. When the two arms come back together, interference between the modified and unmodified beams changes the strength of the mixed output beam depending on the amount of phase shift, thereby encoding data in the light.

Using a simple data signaling scheme of just on and off states, rates of over 100 Gbit/s were achieved, while a more complicated method using four signal levels could achieve a rate of 200 Gbit/s.

This performance was maintained with negligible changes even when operating the devices over temperatures ranging from 25 °C to 110 °C and after subjecting the devices to 90 °C heat for 100 hours, demonstrating the robustness and stability of the modulators over an extraordinarily wide range of temperatures.

“Stable operation even when the temperature fluctuates up to 110 °C is wonderful,” says Yokoyama. “This temperature range means operation in controlled environments such as datacenters, even at higher than normal temperatures, and many harsh environments where temperature is not well controlled is possible.”

The current devices are millimeter sized, making them relatively large compared to other designs, but the researchers are looking into ways to further reduce the footprint for incorporation of a dense arrays of such modulators in a small area.

“This kind of performance shows just how promising polymers are for future telecommunications technologies,” Yokoyama states.

###

For more information about this research, see “High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s-1 for energy-efficient datacentres and harsh-environment applications,” Guo-Wei Lu, Jianxun Hong, Feng Qiu, Andrew M. Spring, Tsubasa Kashino, Juro Oshima, Masa-aki Ozawa, Hideyuki Nawata, and Shiyoshi Yokoyama, Nature Communications (2020). https://doi.org/10.1038/s41467-020-18005-7

Media Contact
William J. Potscavage Jr.
[email protected]

Original Source

https://www.kyushu-u.ac.jp/en/researches/view/180

Related Journal Article

http://dx.doi.org/10.1038/s41467-020-18005-7

Tags: Chemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsElectromagneticsMaterialsOpticsTechnology/Engineering/Computer ScienceTelecommunications
Share13Tweet8Share2ShareShareShare2

Related Posts

blank

Flame Synthesis Creates Custom High-Entropy Metal Nanomaterials

August 2, 2025
Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

Innovative Acid-Base Bifunctional Catalyst Enhances Production of Essential Lithium-Ion Battery Material

August 1, 2025

Oven-Temperature Treatment (~300℃) Enhances Catalyst Performance by Six Times

August 1, 2025

5 Innovations Securing Water Sources and Ensuring Availability

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    44 shares
    Share 18 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Azelaic Acid Blocks Leukemia Cell Skin Trafficking

How Dopamine Influences Confidence and Choice Variations

Quantum Correlations Boost Dual-Comb Spectroscopy Precision

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.