• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, December 28, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

Illuminating tiny proteins in living cells using single-residue labeling tags

Bioengineer by Bioengineer
November 12, 2020
in Science News
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Simon Elsasser

Thirty years ago, the cloning of the green fluorescent protein GFP, together with genetic engineering tools, revolutionized the field by enabling researchers to fuse a fluorescent ‘beacon’ to any protein of interest so that it can be directly observed in living cells using fluorescence microscopy. Today’s microscopes achieve live imaging, at nanometer resolution, in multicolor, allowing researchers to resolve even the smallest subcellular structures. Fluorescent proteins however have a limitation: the size of the fluorescent tag is often equivalent to the size of a typical folded protein, thus adding a considerable molecular ‘cargo’ to the protein under study and potentially impacting its function. This can become a particular obstacle for the study of microproteins, a newly appreciated class of proteins that are much smaller than average.

In a study led by a postdoctoral researcher Lorenzo Lafranchi from Simon Elsässer laboratory at Karolinska Institutet SciLifeLab, a method reported, which allows fluorescent tagging of proteins with the small perturbation – a single amino acid – added genetically on either end of a (micro)protein of interest. The method is termed Single-residue Terminal Labeling, STELLA. It is based on a synthetic building block (a non-canonical “designer” amino acid, rather than one of the 21 canonical ones) that is incorporated together with a larger tag using a technique termed genetic code expansion. The tag is then swiftly removed by the cell, leaving a single terminal designer amino acid on the protein of interest. The designer amino acid introduces a chemical group into the protein that subsequently allows conjugation with a small organic fluorescent dye, lighting up the protein of interest inside of the living cell. The advantage over existing labeling techniques relying on the expansion of the genetic code, and STELLA can be used to label the termini of any proteins.

The study, published in the Journal of the American Chemical Society, demonstrates the utility of STELLA in fluorescent labeling a variety of human proteins and microproteins, localized to different subcellular compartments and organelles. Beyond cellular proteins, the team was also able to label and localize a number of elusive polypeptides produced by the SARS-CoV2 coronavirus causing Covid-19.

###

SciLifeLab is a joint enterprise of Swedish universities that provides frontline technologies and develop cutting-edge research programs. Situated on the expanding Stockholm biomedical campus, SciLifeLab offers the opportunity to work in an internationally competitive and synergistic environment. The Laboratory combines technical expertise with advanced knowledge of molecular biology and translational medicine.

Media Contact
Simon Elsässer
[email protected]

Related Journal Article

http://dx.doi.org/10.1021/jacs.0c09574

Tags: BiologyBiotechnologyCell Biology
Share12Tweet8Share2ShareShareShare2

Related Posts

Advancements in Road Accident Prediction Models

Advancements in Road Accident Prediction Models

December 28, 2025

New Insights on Angiogenesis and Cell Death in Spinal Cord Injury

December 28, 2025

Assessing Surgical Nurses’ AI Literacy and Readiness

December 28, 2025

Link Between Physical Activity and Youth Mental Health

December 28, 2025
Please login to join discussion

POPULAR NEWS

  • Robotic Waist Tether for Research Into Metabolic Cost of Walking

    NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13
  • SARS-CoV-2 Subvariants Affect Outcomes in Elderly Hip Fractures

    44 shares
    Share 18 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advancements in Road Accident Prediction Models

New Insights on Angiogenesis and Cell Death in Spinal Cord Injury

Assessing Surgical Nurses’ AI Literacy and Readiness

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.