• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, February 7, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

The ebb and flow of brain ventricles

Bioengineer by Bioengineer
November 5, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Expansion of ventricles in MS patients often recedes

IMAGE

Credit: Millward et al., MDC

It is not only the heart that has chambers – the brain does, too. Its four ventricles are connected to the spinal canal and filled with a clear liquid called cerebrospinal fluid, which removes metabolic waste from the neurons. If the brain becomes inflamed, immune cells also circulate in this fluid. This is the case in diseases like multiple sclerosis (MS), where the immune system attacks the body’s own protective layer around axons (nerve fibers) in the brain and spinal cord. This triggers inflammation, which ultimately leads to the destruction of neurons.

Usually, the brain’s ventricle volume remains fairly constant. However, in 2013, Dr. Sonia Waiczies and her colleagues from the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC) and Charité – Universitätsmedizin Berlin made a discovery in an MS animal model: They observed that the ventricle volume changed over the course of the disease. When they used an antigen to trigger encephalitis (inflammation of the brain) in mice, MRI scans clearly showed that the ventricles expanded. “Everyone thought it was a sign of brain atrophy,” Waiczies recalls.

The swelling goes back down

If the brain’s ventricles become larger, it follows that the brain must become smaller. After all, the surrounding skull bone leaves it with nowhere else to go. Inflammation does indeed cause brain tissue damage, but atrophy – i.e., a massive loss of brain volume –
does not always occur immediately . And if it did, this process would be non-reversible. “So we conducted a series of further animal experiments, and monitored the brain volumes over two months,” says the neuroimmunologist and senior author of the current study. About ten days after the encephalitis was induced, the rodents’ brain ventricles were significantly enlarged. Then, a few days later, they shrunk back to normal size when the symptoms remitted. Just like the patients, they went on to develop temporary relapses – albeit with milder symptoms than at first – and the ventricles would again become enlarged.

Waiczies, who also works as an MR scientist, finds these results quite logical: “If I have an inflamed joint, for example, an edema forms and it swells up. Once the inflammation subsides, the swelling also goes down.” The team is interested in the molecular mechanisms behind these changes. But first, they wanted to know whether their findings had clinical relevance.

Archival data confirms new findings

Enlarged brain ventricles in people with MS is commonly thought to be a sign of brain atrophy. A reduction in ventricle size had never been reported in patients. So what does this observation mean for MS patients? And can the finding even be transferred from mice to humans? The current study saw the researchers test this with the help of extensive MRI data sets of MS patients. From 2003 to 2008, they had participated in a clinical trial at the Charité to test the effects of a new MS drug. “I was involved in the immunological planning and evaluation of this study, and I knew that the generated MRI data was extensive and robust,” says Waiczies.

A diagnosis of multiple sclerosis is made from MR images and by analyzing cerebrospinal fluid obtained by puncturing the spinal cord. Regular scans allow a better prognosis of disease progression. In this study, participants had received a monthly MRI scan. Countless images now had to be viewed and statistically evaluated. Lead author Dr. Jason Millward, neuroimmunologist at the MDC and Charité and statistics enthusiast, set to work on the new study.

“The key factor was the number of measurements taken over time, which provided us with a unique opportunity to see if the patients exhibited similar trends,” explains Millward. That was indeed the case: “The majority of patients with relapsing-remitting MS exhibited fluctuations in ventricle volume – just as we observed with the mice.” Interestingly, Millward also found that the patients with changes in ventricle volume seemed to be in an earlier stage of the disease.

“We are used to seeing ventricular enlargement in other neurodegenerative diseases – such as Alzheimer’s or Parkinson’s disease. But in those diseases, rather than being reversible, the ventricles just keep expanding,” explains Professor Thoralf Niendorf of the MDC, who also works at the Experimental and Clinical Research Center (ECRC), a joint institution of the MDC and Charité. “Regular monitoring of ventricle volume in MS patients could help to distinguish temporary fluctuations from progressive brain atrophy.” This would also make it possible to better tailor therapies to the individual patient.

Professor Friedemann Paul, a clinical neuroimmunologist at Charité and, together with Waiczies and Niendorf, the current study’s senior author, adds: “From a clinical perspective, examining fluctuations in ventricle volumes in routine MRI patient scans could be an interesting approach to monitoring the course of the disease or of immune therapies. But this will require us to study even larger cohorts over a longer period of time. Comparing these results with clinical findings – for example, regarding cognition – is also going to be important.”

The researchers now want to understand how the “ebb and flow” of brain ventricles occurs at the molecular level.

###

Media Contact
Dr. Sonia Waiczies
[email protected]

Related Journal Article

http://dx.doi.org/10.1172/jci.insight.140040

Tags: Biomechanics/BiophysicsMedicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Breakthrough in Environmental Cleanup: Scientists Develop Solar-Activated Biochar for Faster Remediation

February 7, 2026
blank

Cutting Costs: Making Hydrogen Fuel Cells More Affordable

February 6, 2026

Scientists Develop Hand-Held “Levitating” Time Crystals

February 6, 2026

Observing a Key Green-Energy Catalyst Dissolve Atom by Atom

February 6, 2026
Please login to join discussion

POPULAR NEWS

  • Robotic Ureteral Reconstruction: A Novel Approach

    Robotic Ureteral Reconstruction: A Novel Approach

    82 shares
    Share 33 Tweet 21
  • Digital Privacy: Health Data Control in Incarceration

    63 shares
    Share 25 Tweet 16
  • Study Reveals Lipid Accumulation in ME/CFS Cells

    57 shares
    Share 23 Tweet 14
  • Breakthrough in RNA Research Accelerates Medical Innovations Timeline

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Decoding Prostate Cancer Origins via snFLARE-seq, mxFRIZNGRND

Digital Health Perspectives from Baltic Sea Experts

Florida Cane Toad: Complex Spread and Selective Evolution

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 73 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.