• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 17, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

Impact of arbuscular mycorrhizal species on heterodera glycines

Bioengineer by Bioengineer
October 26, 2020
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: M. L. Pawlowski and G. L. Hartman

Introduced to the United States over 60 years ago, soybean cyst nematode (SCN) has spread broadly throughout the Midwest and eastern parts of the country. After penetrating the root tissue, SCN take nutrients away from the soybean plant and reduce plant growth and yield. These nematodes are the leading cause of soybean losses in the United States–in 2014, SCN resulted in the loss of 3.5 million tons of soybean.

While there are management strategies in place, many of them have become less effective in curtailing SCN populations. University of Illinois and USDA plant pathologists M.L. Pawlowski and G.L. Hartman, respectively, have been involved in an on-going effort to increase soybean productivity by reducing soybean diseases and pests. Their latest research found that arbuscular mycorrhizal fungi in a potential tool in SCN management.

Arbuscular mycorrhizal fungi (AMF) form symbiotic relationships with the roots of most plants, including soybean. Previous research has shown that these fungi can reduce the severity of plant disease caused by pathogens and pests including SCN. Pawlowski and Hartman set out to understand how AMF suppress SCN populations.

In one experiment they found that several different AMF species from different families reduced the number of cysts on soybean roots by 59 to 80 percent. They also found that one AMF species reduced counts of SCN by 60 percent and was able to suppress egg hatching by as much as 30 percent.

“We were surprised to find that AMF was so good at repressing SCN,” said Hartman. “This opens up new avenues of research, which is needed to determine the efficacy of using AMF in field conditions, with a goal of providing another management tool to reduce the impact of SCN on soybean production.”

Hartman also suggests that industries interested in biological control using arbuscular mycorrhizal fungi might consider commercializing the strain (F. mosseae) that was effective in reducing SCN. For more information, read “Impact of Arbuscular Mycorrhizal Species on Heterodera glycines” in the September issue of Plant Disease.

###

Media Contact
Ashley Bergman Carlin
[email protected]

Related Journal Article

http://dx.doi.org/10.1094/PDIS-01-20-0102-RE

Tags: Agricultural Production/EconomicsAgricultureBiologyFertilizers/Pest ManagementFood/Food ScienceMycologyParasitologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

Unveiling Ancient Insights Behind Modern Cytoskeleton Evolution

August 15, 2025
blank

Researchers Identify Molecular “Switch” Driving Chemoresistance in Blood Cancer

August 15, 2025

First Real-Time Recording of Human Embryo Implantation Achieved

August 15, 2025

Ecophysiology and Spread of Freshwater SAR11-IIIb

August 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    59 shares
    Share 24 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Metabolic Inflammation Model Explains Teen Reproductive Issues

Mpox Virus Impact in SIVmac239-Infected Macaques

Epigenetic Mechanisms Shaping Thyroid Cancer Therapy

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.