• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, October 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

Thermal vision of snakes inspires soft pyroelectric materials

Bioengineer by Bioengineer
October 21, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Darbaniyan et al. /Matter

Converting heat into electricity is a property thought to be reserved only for stiff materials like crystals. However, researchers–inspired by the infrared (IR) vision of snakes–developed a mathematical model for converting soft, organic structures into so-called “pyroelectric” materials. The study, appearing October 21 in the journal Matter, proves that soft and flexible matter can be transformed into a pyroelectric material and potentially solves a long-held mystery surrounding the mechanism of IR vision in snakes.

When a material can convert heat into an electric impulse it is called “pyroelectric,” a property typically only found in hard, inflexible substances. The mystery is how IR sensing snakes can achieve this heat-to-electricity conversion despite having naturally soft anatomy.

“People thought we could explain the IR sensing of snakes if there was a hard, pyroelectric material in their pit organ, but nobody ever found one,” says Pradeep Sharma, the M.D. Anderson Professor and Chair of Mechanical Engineering at the University of Houston. “So, we wondered whether just as we are trying to make these soft materials pyroelectric, maybe nature is doing the same thing.”

Pit vipers and other snakes, like the aliens in the Predator series, are well-known for their heat sensing. In fact, the IR vision of pit vipers is so acutely sensitive that “if an animal appears in pitch black darkness, even for a half a second 40 centimeters away, the pit viper will be able to detect it,” Sharma says.

This ability is achieved by a structure called a pit organ–a hollow chamber close to the snake’s nostrils containing a thin, flexible membrane. “The pit organ plays an important role in processing heat into a signal they can detect,” says Sharma. “However, the missing part of the equation was how the neuron cells within the pit organ membrane convert a heat signature into electricity to create that signal.”

Using the physiology of the pit organ membrane as inspiration, Sharma and his team were able to construct a mathematical model to explain how this conversion from heat to electricity could be possible in a soft organic material. “Our solution is deceptively simple,” says Sharma. “Apart from more advanced design elements, to make a pyroelectric soft material all you need is to embed static, stable charges into the material and ensure they don’t leak out. Then you must make sure the material is soft enough that its capable of large deformation in shape and size and has a sensitivity to temperature. If you do that, they will act pyroelectric, and that’s what we’ve been able prove in our model. And we believe that’s what exactly nature is using because this process is simple and robust.”

Lab experiments using soft materials have already begun to authenticate the model, though further research is needed to confirm whether this proposed mechanism is taking place in the neuron cells of the snake’s pit organ membrane. Earlier work had implicated TRPA1 protein channels located within the membrane’s neuron cells as playing an important role; however, the relation of those channels to the proposed mechanism in the paper is yet unknown.

“Using this model, I can confidently create an artificial soft material with pyroelectric properties–of that there is no doubt. And we are fairly confident that we have uncovered at least part of the solution of how these snakes are able to see in the dark, says Sharma. “Now that we’ve developed the model, other scientists can come forward and start doing the experiments to confirm or deny whether our theory about snake IR sensing is correct.”

Next, Sharma wishes to continue his research into soft matter, exploring how to manipulate them to generate electricity solely from a magnetic field. With enough research Sharma hopes to inspire the development of pyro, piezo, and magnetoelectric soft materials, expanding the possibilities of how we generate electricity.

###

Matter, Darbaniyan et al.: “Soft matter mechanics and the mechanisms underpinning the infrared vision of snakes” URL: https://www.cell.com/matter/fulltext/S2590-2385(20)30521-X

Matter (@Matter_CP), published by Cell Press, is a new journal for multi-disciplinary, transformative materials sciences research. Papers explore scientific advancements across the spectrum of materials development–from fundamentals to application, from nano to macro. Visit: https://www.cell.com/matter. To receive Cell Press media alerts, please contact [email protected].

Media Contact
Jordan Greer
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.matt.2020.09.023

Tags: Algorithms/ModelsBiochemistryBiomechanics/BiophysicsChemistry/Physics/Materials SciencesMaterialsMolecular PhysicsPhysiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Scientists Incorporate Waveguide Physics into Metasurfaces to Unlock Advanced Light Manipulation

October 6, 2025
blank

Scientists Develop “Knob” to Control Topological Spin Textures in Materials

October 6, 2025

Scientists develop red fluorescent dyes to enhance clarity in biomedical imaging

October 6, 2025

Breakthrough: Ultrafast Squeezed Light Enables First Real-Time Measurement of Quantum Uncertainty

October 6, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    95 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    93 shares
    Share 37 Tweet 23
  • Ohio State Study Reveals Protein Quality Control Breakdown as Key Factor in Cancer Immunotherapy Failure

    73 shares
    Share 29 Tweet 18
  • New Insights Suggest ALS May Be an Autoimmune Disease

    71 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Vismodegib Treats Facial Basal Cell Carcinoma

Engaging Family Caregivers in Veterans Health Research

New Canadian Study Uncovers HIV Reservoirs Throughout the Body

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 63 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.