• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New technology could improve LASIK surgery, eye disease detection

Bioengineer by Bioengineer
October 20, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Houston professor to create ultrafast 3D clinical imaging system

IMAGE

Credit: University of Houston

LASIK eye surgery – a laser reshaping of the cornea to improve vision – is one of the most popular elective surgeries in the United States, and a University of Houston professor of biomedical engineering intends to improve upon it by giving surgeons more information about the cornea before they begin.

Specifically, Kirill Larin wants to provide measurement of corneal elasticity, a key component of visual acuity. Eye surgeons currently do not have a reliable method to perform a quantitative measurement of corneal elasticity in patients before the procedure.

“We will develop a novel method for the imaging and assessment of corneal elastic properties that could potentially be used for routine clinical diagnostics of different corneal diseases and treatment,” said Larin, who is using a $1.6 million continuation grant from the National Eye Institute to improve current Optical Coherence Tomography (OCT) to provide ultrafast 3D clinical imaging. The technology will combine Brillouin microscopy with Optical Coherence Tomography (OCT) and Optical Coherence Elastography (OCE) – creating the new BOE.

The new BOE technology uses highly localized air pressure stimulation.

“We’re going to use an air puff that will produce very small waves on the surface of the eye. The patient will not feel them, but we will be able to detect them. The speed of the waves will tell us about the elasticity of the cornea,” said Larin. Using OCT, he will reconstruct volumetric biomechanical properties of the cornea.

Larin already developed a first prototype of the combined instrument, demonstrated its capability to measure biomechanical properties of the cornea in vitro and in vivo, and has developed analytical models to extract biomechanical properties. The new grant, he said, will accelerate transition of this technology into clinics, influence the selection and application of corneal surgical treatments and will help understand the structural consequences of corneal disease and wound healing.

Larin’s previous work made fundamental advances in the understanding of corneal biomechanics, which influence clinical interpretation of diagnostic tests, e.g. measurement of intraocular pressure, and have been implicated as important factors in the development of glaucoma.

“Our technology will optimize the delivery of health care to the eye and deliver an early diagnosis for many eye conditions.”

Collaborating on the project with Larin are Michael Twa, dean of the UH College of Optometry and Salavat Aglyamov, research assistant professor of mechanical engineering.

###

Media Contact
Laurie Fickman
[email protected]

Original Source

https://uh.edu/news-events/stories/2020/october-2020/10202020-kirill-larin-new-technology-corneal-elasticity.php

Tags: Biomedical/Environmental/Chemical EngineeringBiotechnologyMedicine/HealthNanotechnology/MicromachinesOpticsTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

November 4, 2025
Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

Innovative Smart Hydrogel Emulates Skin Repair, Accelerating Healing of Diabetic Wounds

November 4, 2025

Chemoenzymatic Synthesis of Lariat Lipopeptides Revolutionized

November 4, 2025

PKU Scientists Reveal Climate Effects and Future Patterns of Hailstorms in China

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling How Sugars Influence the Inflammatory Disease Process

Parkinson’s Mouse Model Reveals How Noise Impairs Movement

Demographic Changes May Drive Rise in Drug-Resistant Infections Across Europe

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.