• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

Assessing state of the art in AI for brain disease treatment

Bioengineer by Bioengineer
October 14, 2020
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A review of artificial intelligence for understanding brain disease reveals the most advanced algorithms available to clinicians

IMAGE

Credit: Image courtesy Alice Segato and Aldo Marzullo

WASHINGTON, October 14, 2020 — Artificial intelligence is lauded for its ability to solve problems humans cannot, thanks to novel computing architectures that process large amounts of complex data quickly. As a result, AI methods, such as machine learning, computer vision, and neural networks, are applied to some of the most difficult problems in science and society.

One tough problem is the diagnosis, surgical treatment, and monitoring of brain diseases. The range of AI technologies available for dealing with brain disease is growing fast, and exciting new methods are being applied to brain problems as computer scientists gain a deeper understanding of the capabilities of advanced algorithms.

In a paper published this week in APL Bioengineering, by AIP Publishing, Italian researchers conducted a systematic literature review to understand the state of the art in the use of AI for brain disease. Their search yielded 2,696 results, and they narrowed their focus to the top 154 most cited papers and took a closer look.

Their qualitative review sheds light on the most interesting corners of AI development. For example, a generative adversarial network was used to synthetically create an aged brain in order to see how disease advances over time.

“The use of artificial intelligence techniques is gradually bringing efficient theoretical solutions to a large number of real-world clinical problems related to the brain,” author Alice Segato said. “Especially in recent years, thanks to the accumulation of relevant data and the development of increasingly effective algorithms, it has been possible to significantly increase the understanding of complex brain mechanisms.”

The authors’ analysis covers eight paradigms of brain care, examining AI methods used to process information about structure and connectivity characteristics of the brain and in assessing surgical candidacy, identifying problem areas, predicting disease trajectory, and for intraoperative assistance. Image data used to study brain disease, including 3D data, such as magnetic resonance imaging, diffusion tensor imaging, positron emission tomography, and computed tomography imaging, can be analyzed using computer vision AI techniques.

But the authors urge caution, noting the importance of “explainable algorithms” with paths to solutions that are clearly delineated, not a “black box” — the term for AI that reaches an accurate solution but relies on inner workings that are little understood or invisible.

“If humans are to accept algorithmic prescriptions or diagnosis, they need to trust them,” Segato said. “Researchers’ efforts are leading to the creation of increasingly sophisticated and interpretable algorithms, which could favor a more intensive use of ‘intelligent’ technologies in practical clinical contexts.”

###

The article, “Artificial intelligence for brain diseases: A systematic review,” is authored by Alice Segato, Aldo Marzullo, Francesco Calimeri, and Elena De Momi. The article can be accessed at https://aip.scitation.org/doi/10.1063/5.0011697.

ABOUT THE JOURNAL/

APL Bioengineering is an open access journal publishing significant discoveries specific to the understanding and advancement of physics and engineering of biological systems. See http://aip.scitation.org/journal/apb.

Media Contact
Larry Frum
[email protected]

Related Journal Article

http://dx.doi.org/10.1063/5.0011697

Tags: Algorithms/ModelsBiologyCalculations/Problem-SolvingComputer ScienceMathematics/StatisticsMedicine/HealthneurobiologyTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Astrocyte Fate in Mouse Septum Driven by Origins, Signals

Astrocyte Fate in Mouse Septum Driven by Origins, Signals

August 3, 2025
blank

AI Predicts Sinus Surgery Outcomes from Images

August 3, 2025

Fat Cell N-Acetylaspartate Controls Post-Meal Body Temperature

August 3, 2025

Boosting Stem Cell Growth with Testis Scaffolds

August 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    47 shares
    Share 19 Tweet 12
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

30-Hydroxygambogic Acid Boosts Cisplatin Against HPV+ Cancer

Bright Excitons Enable Optical Spin State Control

High-Brightness Quantum Cascade Lasers Operate Efficiently Continuously

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.