• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, August 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

NTU scientists report plastic could be ‘eco-friendlier’ than paper &cotton in Singapore

Bioengineer by Bioengineer
October 14, 2020
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: NTU Singapore

Scientists from Nanyang Technological University, Singapore (NTU Singapore) have modelled the cradle-to-grave environmental impact of using different types of shopping bags and report that in cities like Singapore, single-use plastic bags (made from high-density polyethylene plastic) have a lower environmental footprint than single-use paper and multi-use cotton bags.

Reusable plastic bags made from polypropylene non-woven plastic were the most eco-friendly option, followed by single-use plastic bags.

The model revealed that cotton and kraft paper bags have relatively bigger environmental footprints due to their greater contribution to global warming and eco-toxicity potential in their production.

However, the NTU team stressed that their model applied specifically to Singapore and might be applicable in cities such as Tokyo, Hong Kong, and Dubai. Reusable and single-use plastic bags would be a comparatively better environmental option only in these cities, due to the model’s focus on densely populated metropolitan areas that have waste management structures with similar end-of-life incineration facilities.

The findings were published in the scientific Journal of Cleaner Production in August 2020.

Assistant Professor Grzegorz Lisak, Director of Residues & Resource Reclamation Centre at the Nanyang Environment and Water Institute (NEWRI), who led the research, said: “Our main message is that re-usable plastic bags are the best option, provided that they are re-used many times – over 50 times to be precise. However, one surprising conclusion is that, in our model, in a single-use case, plastic bags, if treated properly afterwards, are less environmentally detrimental than the other types of bags in this study.”

“It is essential to evaluate the implications case by case for dealing with plastic waste. In a well-structured closed metropolitan waste management system with incineration treatment, using plastic bags may be the best option that is currently available, provided that there is no significant leakage of waste into the environment.”

To reach their conclusions, the team carried out a life cycle analysis of five types of bags to evaluate the environmental impacts associated with their production, distribution, transportation, waste collection, treatment, and end-of-life disposal.

The research team found that the global warming potential of a single-use kraft paper bag was the highest, over 80 times that of reusable plastic bags. Single-use plastic and reusable cotton bags (reused 50 times) were calculated to have over ten times the global warming potential of reusable plastic bags (reused 50 times).

To offset the emission equivalent to equal that of the creation of one single-use plastic bag, a reusable plastic bag would need to be reused four times.

The team also observed that the relative negative environmental impacts of cotton and kraft paper bags in the model are due to their production processes that consume immense amounts of water and natural resources. Hence, improving the production methods, optimizing resource usage, and following sustainable practices could in future favour the usage of bags made from cotton and paper.

Relevance to cities and their waste reduction goals

In the case of Singapore, the team recommends the usage of reusable plastic bags to the greatest extent possible to reduce consumption of single-use plastic bags. Reprocessing single-use plastic bags would be a good policy goal to cut down on their environmental impact.

Asst Prof Lisak said that based on 2018 statistics in Singapore, reducing the single-use plastic grocery bag consumption by half could prevent over 10 million kg-CO2 equivalent emissions in a year.

Moving forward, the team will be embarking on further studies connected to plastic waste management, waste plastic upgrading and the development of new products

###

Media Contact
Joseph Gan
[email protected]

Original Source

http://news.ntu.edu.sg/pages/newsdetail.aspx?URL=http://news.ntu.edu.sg/news/Pages/NR2020_Oct141014-8397.aspx&Guid=05d15f3d-3f9b-4ccc-8f68-b26e5a5abab2&Category=News+Releases

Related Journal Article

http://dx.doi.org/10.1016/j.jclepro.2020.123956

Tags: Atmospheric ScienceBiomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesClimate ChangeEarth SciencePolicy/EthicsPollution/RemediationTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Deep Radiomics Boost Chemotherapy Prediction in Breast Cancer

August 11, 2025
blank

Unveiling Quantum Potential: Rice Researchers Discover Advanced Quantum Interference Mechanism

August 11, 2025

Dr. Anis Ahmed Highlights Unique Mental Health Challenges Faced by Victims of Enforced Disappearances

August 11, 2025

Disrupting Brain-Liver Signaling Could Halt Fatal Cancer-Related Weight Loss

August 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    139 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    78 shares
    Share 31 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    57 shares
    Share 23 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Deep Radiomics Boost Chemotherapy Prediction in Breast Cancer

Unveiling Quantum Potential: Rice Researchers Discover Advanced Quantum Interference Mechanism

Dr. Anis Ahmed Highlights Unique Mental Health Challenges Faced by Victims of Enforced Disappearances

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.